smile.base.cart.DecisionNode Maven / Gradle / Ivy
The newest version!
/*
* Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Smile. If not, see .
*/
package smile.base.cart;
import smile.data.type.StructField;
import smile.data.type.StructType;
import smile.math.MathEx;
import java.io.Serial;
import java.math.BigInteger;
import java.util.Arrays;
import java.util.List;
import java.util.stream.Collectors;
/**
* A leaf node in decision tree.
*
* @author Haifeng Li
*/
public class DecisionNode extends LeafNode {
@Serial
private static final long serialVersionUID = 2L;
/** The predicted output. */
private final int output;
/** The number of node samples in each class. */
private final int[] count;
/**
* Constructor.
*
* @param count the number of node samples in each class.
*/
public DecisionNode(int[] count) {
super((int) MathEx.sum(count));
this.output = MathEx.whichMax(count);
this.count = count;
}
/**
* Returns the predicted value.
* @return the predicted value.
*/
public int output() {
return output;
}
/**
* Returns the sample size in each class.
* @return the sample size in each class.
*/
public int[] count() {
return count;
}
@Override
public double deviance() {
return deviance(count, posteriori(count, new double[count.length]));
}
@Override
public String dot(StructType schema, StructField response, int id) {
return String.format(" %d [label=<%s = %s
size = %d
deviance = %.4f>, fillcolor=\"#00000000\", shape=ellipse];\n", id, response.name, response.toString(output), size, deviance());
}
@Override
public int[] toString(StructType schema, StructField response, InternalNode parent, int depth, BigInteger id, List lines) {
StringBuilder line = new StringBuilder();
// indent
line.append(" ".repeat(depth));
line.append(id).append(") ");
// split
line.append(parent == null ? "root" : parent.toString(schema, this == parent.trueChild)).append(" ");
// size
line.append(size).append(" ");
// deviance
double[] prob = posteriori(count, new double[count.length]);
line.append(String.format("%.5g", deviance(count, prob))).append(" ");
// fitted value
line.append(response.toString(output)).append(" ");
// probabilities
line.append(Arrays.stream(prob).mapToObj(p -> String.format("%.5g", p)).collect(Collectors.joining(" ", "(", ")")));
// terminal node
line.append(" *");
lines.add(line.toString());
return count;
}
/**
* Returns the impurity of node.
* @param rule the node split rule.
* @return the impurity of node
*/
public double impurity(SplitRule rule) {
return impurity(rule, size, count);
}
/**
* Returns the impurity of samples.
* @param rule the node split rule.
* @param size the number of samples.
* @param count the number of samples in each class.
* @return the impurity of node
*/
public static double impurity(SplitRule rule, int size, int[] count) {
double impurity = 0.0;
switch (rule) {
case GINI:
double squared_sum = 0;
for (int c : count) {
if (c > 0) {
squared_sum += (double) c * c;
}
}
impurity = 1 - squared_sum / ((double) size * size);
break;
case ENTROPY:
for (int c : count) {
if (c > 0) {
double p = (double) c / size;
impurity -= p * MathEx.log2(p);
}
}
break;
case CLASSIFICATION_ERROR:
impurity = Math.abs(1 - MathEx.max(count) / (double) size);
break;
}
return impurity;
}
@Override
public boolean equals(Object o) {
if (o instanceof DecisionNode a) {
return output == a.output;
}
return false;
}
/**
* Returns the class probability.
* @param prob the output variable of posteriori probabilities.
* @return the posteriori probabilities.
*/
public double[] posteriori(double[] prob) {
return posteriori(count, prob);
}
/**
* Returns the class probability.
* @param count the input variable of the number of samples per class.
* @param prob the output variable of posteriori probabilities.
* @return the posteriori probabilities.
*/
public static double[] posteriori(int[] count, double[] prob) {
int k = count.length;
double n = MathEx.sum(count) + k;
for (int i = 0; i < k; i++) {
prob[i] = (count[i] + 1) / n;
}
return prob;
}
/**
* Returns the deviance of node.
* @param count the input variable of the number of samples per class.
* @param prob the output variable of posteriori probabilities.
* @return the deviance of node.
*/
public static double deviance(int[] count, double[] prob) {
int k = count.length;
double d = 0.0;
for (int i = 0; i < k; i++) {
d -= count[i] * Math.log(prob[i]);
}
return 2 * d;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy