smile.base.cart.RegressionNode Maven / Gradle / Ivy
The newest version!
/*
* Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Smile. If not, see .
*/
package smile.base.cart;
import java.io.Serial;
import java.math.BigInteger;
import java.util.List;
import smile.data.type.StructField;
import smile.data.type.StructType;
import smile.math.MathEx;
/**
* A leaf node in regression tree.
*
* @author Haifeng Li
*/
public class RegressionNode extends LeafNode {
@Serial
private static final long serialVersionUID = 2L;
/** The mean of response variable. */
private final double mean;
/**
* The predicted output. In standard regression tree,
* this is same as the mean. However, in gradient tree
* boosting, this may be different.
*/
private final double output;
/** The residual sum of squares. */
private final double rss;
/**
* Constructor.
*
* @param size the number of samples in the node
* @param output the predicted value for this node.
* @param mean the mean of response variable.
* @param rss the residual sum of squares.
*/
public RegressionNode(int size, double output, double mean, double rss) {
super(size);
this.output = output;
this.mean = mean;
this.rss = rss;
}
/**
* Returns the predicted value.
* @return the predicted value.
*/
public double output() {
return output;
}
/**
* Returns the mean of response variable.
* @return the mean of response variable.
*/
public double mean() {
return mean;
}
/**
* Returns the residual sum of squares.
* @return the residual sum of squares.
*/
public double impurity() {
return rss;
}
@Override
public double deviance() {
return rss;
}
@Override
public String dot(StructType schema, StructField response, int id) {
return String.format(" %d [label=<%s = %.4f
size = %d
deviance = %.4f>, fillcolor=\"#00000000\", shape=ellipse];\n", id, response.name, output, size, rss);
}
@Override
public int[] toString(StructType schema, StructField response, InternalNode parent, int depth, BigInteger id, List lines) {
StringBuilder line = new StringBuilder();
// indent
line.append(" ".repeat(depth));
line.append(id).append(") ");
// split
line.append(parent == null ? "root" : parent.toString(schema, this == parent.trueChild)).append(" ");
// size
line.append(size).append(" ");
// deviance
line.append(String.format("%.5g", rss)).append(" ");
// fitted value
line.append(String.format("%g", output));
// terminal node
line.append(" *");
lines.add(line.toString());
return new int[]{size};
}
@Override
public boolean equals(Object o) {
if (o instanceof RegressionNode a) {
return MathEx.equals(output, a.output);
}
return false;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy