smile.base.mlp.HiddenLayer Maven / Gradle / Ivy
The newest version!
/*
* Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Smile. If not, see .
*/
package smile.base.mlp;
import java.io.Serial;
/**
* A hidden layer in the neural network.
*
* @author Haifeng Li
*/
public class HiddenLayer extends Layer {
@Serial
private static final long serialVersionUID = 2L;
/** The activation function. */
private final ActivationFunction activation;
/**
* Constructor.
* @param n the number of neurons.
* @param p the number of input variables (not including bias value).
* @param dropout the dropout rate.
* @param activation the activation function.
*/
public HiddenLayer(int n, int p, double dropout, ActivationFunction activation) {
super(n, p, dropout);
this.activation = activation;
}
@Override
public String toString() {
if (dropout > 0.0) {
return String.format("%s(%d, %.2f)", activation.name(), n, dropout);
} else {
return String.format("%s(%d)", activation.name(), n);
}
}
@Override
public void transform(double[] x) {
activation.f(x);
}
@Override
public void backpropagate(double[] lowerLayerGradient) {
double[] output = this.output.get();
double[] outputGradient = this.outputGradient.get();
activation.g(outputGradient, output);
if (lowerLayerGradient != null) {
weight.tv(outputGradient, lowerLayerGradient);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy