smile.base.mlp.InputLayer Maven / Gradle / Ivy
The newest version!
/*
* Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Smile. If not, see .
*/
package smile.base.mlp;
import java.io.IOException;
import java.io.Serial;
/**
* An input layer in the neural network.
*
* @author Haifeng Li
*/
public class InputLayer extends Layer {
@Serial
private static final long serialVersionUID = 2L;
/**
* Constructor.
* @param p the number of input variables (not including bias value).
*/
public InputLayer(int p) {
this(p, 0.0);
}
/**
* Constructor.
* @param p the number of input variables (not including bias value).
* @param dropout the dropout rate.
*/
public InputLayer(int p, double dropout) {
super(p, dropout);
}
/**
* Initializes the workspace when deserializing the object.
* @param in the input stream.
* @throws IOException when fails to read the stream.
* @throws ClassNotFoundException when fails to load the class.
*/
@Serial
private void readObject(java.io.ObjectInputStream in) throws IOException, ClassNotFoundException {
in.defaultReadObject();
output = ThreadLocal.withInitial(() -> new double[n]);
if (dropout > 0.0) {
mask = ThreadLocal.withInitial(() -> new byte[n]);
}
}
@Override
public String toString() {
if (dropout > 0.0) {
return String.format("Input(%d, %.2f)", n, dropout);
} else {
return String.format("Input(%d)", n);
}
}
@Override
public void propagate(double[] x) {
System.arraycopy(x, 0, output.get(), 0, p);
}
@Override
public void backpropagate(double[] lowerLayerGradient) {
throw new UnsupportedOperationException();
}
@Override
public void transform(double[] x) {
// identity activation function
}
@Override
public void computeGradient(double[] x) {
throw new UnsupportedOperationException();
}
@Override
public void computeGradientUpdate(double[] x, double learningRate, double momentum, double decay) {
throw new UnsupportedOperationException();
}
@Override
public void update(int m, double learningRate, double momentum, double decay, double rho, double epsilon) {
throw new UnsupportedOperationException();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy