smile.base.mlp.MultilayerPerceptron Maven / Gradle / Ivy
/*
* Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Smile. If not, see .
*/
package smile.base.mlp;
import java.io.IOException;
import java.io.Serial;
import java.io.Serializable;
import java.util.Arrays;
import java.util.Properties;
import java.util.stream.Collectors;
import smile.math.MathEx;
import smile.math.TimeFunction;
/**
* Fully connected multilayer perceptron neural network.
* An MLP consists of at least three layers of nodes: an input layer,
* a hidden layer and an output layer. The nodes are interconnected
* through weighted acyclic arcs from each preceding layer to the
* following, without lateral or feedback connections. Each node
* calculates a transformed weighted linear combination of its inputs
* (output activations from the preceding layer), with one of the weights
* acting as a trainable bias connected to a constant input. The
* transformation, called activation function, is a bounded non-decreasing
* (non-linear) function.
*
* @author Haifeng Li
*/
public abstract class MultilayerPerceptron implements Serializable {
@Serial
private static final long serialVersionUID = 2L;
/**
* The dimensionality of input data.
*/
protected int p;
/**
* The output layer.
*/
protected OutputLayer output;
/**
* The input and hidden layers.
*/
protected Layer[] net;
/**
* The buffer to store desired target value of training instance.
*/
protected transient ThreadLocal target;
/**
* The learning rate.
*/
protected TimeFunction learningRate = TimeFunction.constant(0.01);
/**
* The momentum factor.
*/
protected TimeFunction momentum = null;
/**
* The discounting factor for the history/coming gradient in RMSProp.
*/
protected double rho = 0.0;
/**
* A small constant for numerical stability in RMSProp.
*/
protected double epsilon = 1E-07;
/**
* The L2 regularization factor, which is also the weight decay factor.
*/
protected double lambda = 0.0;
/**
* The gradient clipping value.
*/
protected double clipValue = 0.0;
/**
* The gradient clipping norm.
*/
protected double clipNorm = 0.0;
/**
* The training iterations.
*/
protected int t = 0;
/**
* Constructor.
* @param net the input layer, hidden layers, and output layer in order.
*/
public MultilayerPerceptron(Layer... net) {
if (net.length <= 2) {
throw new IllegalArgumentException("Too few layers: " + net.length);
}
if (!(net[0] instanceof InputLayer)) {
throw new IllegalArgumentException("The first layer is not an InputLayer: " + net[0]);
}
if (!(net[net.length-1] instanceof OutputLayer)) {
throw new IllegalArgumentException("The last layer is not an OutputLayer: " + net[net.length-1]);
}
Layer lower = net[0];
for (int i = 1; i < net.length; i++) {
Layer layer = net[i];
if (layer.getInputSize() != lower.getOutputSize()) {
throw new IllegalArgumentException(String.format(
"Invalid network architecture. Layer %d has %d neurons while layer %d takes %d inputs",
i-1, lower.getOutputSize(),
i, layer.getInputSize()));
}
lower = layer;
}
this.output = (OutputLayer) net[net.length - 1];
this.net = Arrays.copyOf(net, net.length - 1);
this.p = net[0].getInputSize();
init();
}
/**
* Initializes the workspace when deserializing the object.
* @param in the input stream.
* @throws IOException when fails to read the stream.
* @throws ClassNotFoundException when fails to load the class.
*/
@Serial
private void readObject(java.io.ObjectInputStream in) throws IOException, ClassNotFoundException {
in.defaultReadObject();
init();
}
/**
* Initializes the workspace.
*/
private void init() {
target = ThreadLocal.withInitial(() -> new double[output.getOutputSize()]);
}
@Override
public String toString() {
String s = String.format("%s -> %s(learning rate = %s",
Arrays.stream(net).map(Object::toString).collect(Collectors.joining(" -> ")),
output, learningRate);
if (momentum != null) {
s = String.format("%s, momentum = %s", s, momentum);
}
if (lambda != 0.0) {
s = String.format("%s, weight decay = %f", s, lambda);
}
if (rho != 0.0) {
s = String.format("%s, RMSProp = %f", s, rho);
}
return s + ")";
}
/**
* Sets the learning rate.
* @param rate the learning rate.
*/
public void setLearningRate(TimeFunction rate) {
this.learningRate = rate;
}
/**
* Sets the momentum factor. momentum = 0.0 means no momentum.
* @param momentum the momentum factor.
*/
public void setMomentum(TimeFunction momentum) {
this.momentum = momentum;
}
/**
* Sets RMSProp parameters.
* @param rho The discounting factor for the history/coming gradient.
* @param epsilon A small constant for numerical stability.
*/
public void setRMSProp(double rho, double epsilon) {
if (rho < 0.0 || rho >= 1.0) {
throw new IllegalArgumentException("Invalid rho = " + rho);
}
if (epsilon <= 0.0) {
throw new IllegalArgumentException("Invalid epsilon = " + epsilon);
}
this.rho = rho;
this.epsilon = epsilon;
}
/**
* Sets the weight decay factor. After each weight update,
* every weight is simply "decayed" or shrunk according to
* w = w * (1 - 2 * eta * lambda).
* @param lambda the weight decay factor.
*/
public void setWeightDecay(double lambda) {
if (lambda < 0.0) {
throw new IllegalArgumentException("Invalid weight decay factor: " + lambda);
}
this.lambda = lambda;
}
/**
* Sets the gradient clipping value. If clip value is set, the gradient of
* each weight is clipped to be no higher than this value.
* @param clipValue the gradient clipping value.
*/
public void setClipValue(double clipValue) {
if (clipValue < 0.0) {
throw new IllegalArgumentException("Invalid gradient clipping value: " + clipValue);
}
this.clipValue = clipValue;
}
/**
* Sets the gradient clipping norm. If clip norm is set, the gradient of
* each weight is individually clipped so that its norm is no higher than
* this value.
* @param clipNorm the gradient clipping norm.
*/
public void setClipNorm(double clipNorm) {
if (clipNorm < 0.0) {
throw new IllegalArgumentException("Invalid gradient clipping norm: " + clipNorm);
}
this.clipNorm = clipNorm;
}
/**
* Returns the learning rate.
* @return the learning rate.
*/
public double getLearningRate() {
return learningRate.apply(t);
}
/**
* Returns the momentum factor.
* @return the momentum factor.
*/
public double getMomentum() {
return momentum == null ? 0.0 : momentum.apply(t);
}
/**
* Returns the weight decay factor.
* @return the weight decay factor.
*/
public double getWeightDecay() {
return lambda;
}
/**
* Returns the gradient clipping value.
* @return the gradient clipping value.
*/
public double getClipValue() {
return clipValue;
}
/**
* Returns the gradient clipping norm.
* @return the gradient clipping norm.
*/
public double getClipNorm() {
return clipNorm;
}
/**
* Propagates the signals through the neural network.
* @param x the input signal.
* @param training true if this is in training pass.
*/
protected void propagate(double[] x, boolean training) {
double[] input = x;
for (Layer layer : net) {
layer.propagate(input);
if (training) {
layer.propagateDropout();
}
input = layer.output();
}
output.propagate(input);
}
/**
* Gradient clipping prevents exploding gradients in very deep networks,
* usually in recurrent neural networks.
* @param gradient the gradient vector.
*/
private void clipGradient(double[] gradient) {
if (clipNorm > 0.0) {
double norm = MathEx.norm(gradient);
if (norm > clipNorm) {
double scale = clipNorm / norm;
for (int j = 0; j < gradient.length; j++) {
gradient[j] *= scale;
}
}
} else if (clipValue > 0.0) {
for (int j = 0; j < gradient.length; j++) {
if (gradient[j] > clipValue) {
gradient[j] = clipValue;
} else if (gradient[j] < -clipValue) {
gradient[j] = -clipValue;
}
}
}
}
/**
* Propagates the errors back through the network.
* @param update the flag if update the weights directly.
* It should be false for (mini-)batch.
*/
protected void backpropagate(boolean update) {
output.computeOutputGradient(target.get(), 1.0);
clipGradient(output.gradient());
Layer upper = output;
for (int i = net.length; --i > 0;) {
upper.backpropagate(net[i].gradient());
upper = net[i];
upper.backpopagateDropout();
clipGradient(upper.gradient());
}
// first hidden layer
upper.backpropagate(null);
if (update) {
double eta = getLearningRate();
if (eta <= 0) {
throw new IllegalArgumentException("Invalid learning rate: " + eta);
}
double alpha = getMomentum();
if (alpha < 0.0 || alpha >= 1.0) {
throw new IllegalArgumentException("Invalid momentum factor: " + alpha);
}
double decay = 1.0 - 2 * eta * lambda;
if (decay < 0.9) {
throw new IllegalStateException(String.format("Invalid learning rate (eta = %.2f) and/or L2 regularization (lambda = %.2f) such that weight decay = %.2f", eta, lambda, decay));
}
double[] x = net[0].output();
for (int i = 1; i < net.length; i++) {
Layer layer = net[i];
layer.computeGradientUpdate(x, eta, alpha, decay);
x = layer.output();
}
output.computeGradientUpdate(x, eta, alpha, decay);
} else {
double[] x = net[0].output();
for (int i = 1; i < net.length; i++) {
Layer layer = net[i];
layer.computeGradient(x);
x = layer.output();
}
output.computeGradient(x);
}
}
/**
* Updates the weights for mini-batch training.
*
* @param m the mini-batch size.
*/
protected void update(int m) {
double eta = getLearningRate();
if (eta <= 0) {
throw new IllegalArgumentException("Invalid learning rate: " + eta);
}
double alpha = getMomentum();
if (alpha < 0.0 || alpha >= 1.0) {
throw new IllegalArgumentException("Invalid momentum factor: " + alpha);
}
double decay = 1.0 - 2 * eta * lambda;
if (decay < 0.9) {
throw new IllegalStateException(String.format("Invalid learning rate (eta = %.2f) and/or decay (lambda = %.2f)", eta, lambda));
}
for (int i = 1; i < net.length; i++) {
net[i].update(m, eta, alpha, decay, rho, epsilon);
}
output.update(m, eta, alpha, decay, rho, epsilon);
}
/**
* Sets MLP hyperparameters such as learning rate, weight decay, momentum,
* RMSProp, etc.
* @param params the MLP hyperparameters.
*/
public void setParameters(Properties params) {
String learningRate = params.getProperty("smile.mlp.learning_rate");
if (learningRate != null) {
setLearningRate(TimeFunction.of(learningRate));
}
String weightDecay = params.getProperty("smile.mlp.weight_decay");
if (weightDecay != null) {
setWeightDecay(Double.parseDouble(weightDecay));
}
String momentum = params.getProperty("smile.mlp.momentum");
if (momentum != null) {
setMomentum(TimeFunction.of(momentum));
}
String clipValue = params.getProperty("smile.mlp.clip_value");
if (clipValue != null) {
setClipValue(Double.parseDouble(clipValue));
}
String clipNorm = params.getProperty("smile.mlp.clip_norm");
if (clipNorm != null) {
setClipNorm(Double.parseDouble(clipNorm));
}
String rho = params.getProperty("smile.mlp.RMSProp.rho");
if (rho != null) {
double epsilon = Double.parseDouble(params.getProperty("smile.mlp.RMSProp.epsilon", "1E-7"));
setRMSProp(Double.parseDouble(rho), epsilon);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy