smile.base.mlp.OutputLayer Maven / Gradle / Ivy
/*
* Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Smile. If not, see .
*/
package smile.base.mlp;
import java.io.Serial;
/**
* The output layer in the neural network.
*
* @author Haifeng Li
*/
public class OutputLayer extends Layer {
@Serial
private static final long serialVersionUID = 2L;
/** The cost function. */
private final Cost cost;
/** The output activation function. */
private final OutputFunction activation;
/**
* Constructor.
* @param n the number of neurons.
* @param p the number of input variables (not including bias value).
* @param activation the output activation function.
* @param cost the cost function.
*/
public OutputLayer(int n, int p, OutputFunction activation, Cost cost) {
super(n, p);
switch (cost) {
case MEAN_SQUARED_ERROR:
if (activation == OutputFunction.SOFTMAX) {
throw new IllegalArgumentException("Softmax output function is not allowed with mean squared error cost function");
}
break;
case LIKELIHOOD:
if (activation == OutputFunction.LINEAR) {
throw new IllegalArgumentException("Linear output function is not allowed with likelihood cost function");
}
break;
}
this.activation = activation;
this.cost = cost;
}
@Override
public String toString() {
return String.format("%s(%d) | %s", activation.name(), n, cost);
}
/**
* Returns the cost function of neural network.
* @return the cost function.
*/
public Cost cost() {
return cost;
}
@Override
public void transform(double[] x) {
activation.f(x);
}
@Override
public void backpropagate(double[] lowerLayerGradient) {
weight.tv(outputGradient.get(), lowerLayerGradient);
}
/**
* Compute the network output gradient.
* @param target the desired output.
* @param weight a positive weight value associated with the training instance.
*/
public void computeOutputGradient(double[] target, double weight) {
double[] output = this.output.get();
double[] outputGradient = this.outputGradient.get();
int n = output.length;
if (target.length != n) {
throw new IllegalArgumentException(String.format("Invalid target vector size: %d, expected: %d", target.length, n));
}
for (int i = 0; i < n; i++) {
outputGradient[i] = target[i] - output[i];
}
activation.g(cost, outputGradient, output);
if (weight > 0.0 && weight != 1.0) {
for (int i = 0; i < n; i++) {
outputGradient[i] *= weight;
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy