smile.base.svm.LASVM Maven / Gradle / Ivy
/*
* Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Smile. If not, see .
*/
package smile.base.svm;
import java.io.Serial;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.Arrays;
import smile.math.MathEx;
import smile.math.kernel.MercerKernel;
/**
* LASVM is an approximate SVM solver that uses online approximation.
* It reaches accuracies similar to that of a real SVM after performing
* a single sequential pass through the training examples. Further
* benefits can be achieved using selective sampling techniques to
* choose which example should be considered next.
* LASVM requires considerably less memory than a regular SVM solver.
* This becomes a considerable speed advantage for large training sets.
*
* @param the data type of model input objects.
*
* @author Haifeng Li
*/
public class LASVM implements Serializable {
@Serial
private static final long serialVersionUID = 2L;
private static final org.slf4j.Logger logger = org.slf4j.LoggerFactory.getLogger(LASVM.class);
/**
* The default value for K_tt + K_ss - 2 * K_ts if kernel is not positive.
*/
private static final double TAU = 1E-12;
/**
* The kernel function.
*/
private final MercerKernel kernel;
/**
* The soft margin penalty parameter for positive samples.
*/
private final double Cp;
/**
* The soft margin penalty parameter for negative samples.
*/
private final double Cn;
/**
* The tolerance of convergence test.
*/
private final double tol;
/**
* Support vectors.
*/
private final ArrayList> vectors = new ArrayList<>();
/**
* Threshold of decision function.
*/
private double b = 0.0;
/**
* True if minmax() is already called after update.
*/
private boolean minmaxflag = false;
/*
* Most violating pair.
* argmin gi of m_i < alpha_i
* argmax gi of alpha_i < M_i
* where m_i = min{0, y_i * C}
* and M_i = max{0, y_i * C}
*/
/** The most violating pair. */
private SupportVector svmin = null;
/** The most violating pair. */
private SupportVector svmax = null;
/** The gradient of most violating pair. */
private double gmin = Double.MAX_VALUE;
/** The gradient of most violating pair. */
private double gmax = -Double.MAX_VALUE;
/**
* The training samples.
*/
private T[] x;
/**
* The kernel matrix.
*/
private double[][] K;
/**
* Constructor.
* @param kernel the kernel.
* @param C the soft margin penalty parameter.
* @param tol the tolerance of convergence test.
*/
public LASVM(MercerKernel kernel, double C, double tol) {
this(kernel, C, C, tol);
}
/**
* Constructor.
* @param kernel the kernel.
* @param Cp the soft margin penalty parameter for positive instances.
* @param Cn the soft margin penalty parameter for negative instances.
* @param tol the tolerance of convergence test.
*/
public LASVM(MercerKernel kernel, double Cp, double Cn, double tol) {
if (Cp < 0) {
throw new IllegalArgumentException("Invalid C: " + Cp);
}
if (Cn < 0) {
throw new IllegalArgumentException("Invalid C: " + Cn);
}
if (tol <= 0) {
throw new IllegalArgumentException("Invalid tol: " + tol);
}
this.kernel = kernel;
this.Cp = Cp;
this.Cn = Cn;
this.tol = tol;
}
/**
* Trains the model.
* @param x training samples.
* @param y training labels.
* @param epochs the number of epochs, usually 1 or 2 is sufficient.
* @return the model.
*/
public KernelMachine fit(T[] x, int[] y, int epochs) {
this.x = x;
this.K = new double[x.length][];
// pick initial support vectors.
init(x, y);
// stochastic training
int phase = Math.min(x.length, 1000);
for (int epoch = 0, iter = 0; epoch < epochs; epoch++) {
for (int i : MathEx.permutate(x.length)) {
process(i, x[i], y[i]);
do {
reprocess(tol); // at least one call to reprocess
minmax();
} while (gmax - gmin > 1000);
if (++iter % phase == 0) {
logger.info("{} iterations, {} support vectors", iter, vectors.size());
}
}
}
finish();
int n = vectors.size();
@SuppressWarnings("unchecked")
T[] sv = (T[]) java.lang.reflect.Array.newInstance(x.getClass().getComponentType(), n);
double[] alpha = new double[n];
for (int i = 0; i < n; i++) {
SupportVector v = vectors.get(i);
sv[i] = v.x;
alpha[i] = v.alpha;
}
return new KernelMachine<>(kernel, sv, alpha, b);
}
/**
* Initialize the SVM with some instances as support vectors.
*/
private void init(T[] x, int[] y) {
int few = 5;
int cp = 0, cn = 0;
for (int i : MathEx.permutate(x.length)) {
if (y[i] == 1 && cp < few) {
if (process(i, x[i], y[i])) cp++;
} else if (y[i] == -1 && cn < few) {
if (process(i, x[i], y[i])) cn++;
}
if (cp >= few && cn >= few) break;
}
}
/**
* Finds the support vectors with smallest (of I_up) and largest (of I_down) gradients.
*/
private void minmax() {
if (minmaxflag) return;
gmin = Double.MAX_VALUE;
gmax = -Double.MAX_VALUE;
for (SupportVector v : vectors) {
double gi = v.g;
double ai = v.alpha;
if (gi < gmin && ai > v.cmin) {
svmin = v;
gmin = gi;
}
if (gi > gmax && ai < v.cmax) {
svmax = v;
gmax = gi;
}
}
minmaxflag = true;
}
/**
* Returns the cached kernel value.
* @param i the index of support vector.
* @param j the index of support vector.
* @return the kernel value.
*/
private double k(int i, int j) {
double k = Double.NaN;
double[] ki = K[i];
if (ki != null) {
k = ki[j];
}
if (Double.isNaN(k)) {
k = kernel.k(x[i], x[j]);
if (ki != null) ki[j] = k;
}
return k;
}
/**
* Sequential minimal optimization.
* @param v1 the first vector of working set.
* @param v2 the second vector of working set.
* @param epsgr the tolerance of convergence test.
* @return true if NOT pass convergence test.
*/
private boolean smo(SupportVector v1, SupportVector v2, double epsgr) {
// SMO working set selection
// Determine coordinate to process
if (v1 == null && v2 == null) {
minmax();
if (gmax > -gmin) {
v2 = svmax;
} else {
v1 = svmin;
}
}
// kernel(v1, v2)
double k12 = Double.NaN;
if (v2 == null) {
// determine imax
assert v1 != null;
double km = v1.k;
double gm = v1.g;
double best = 0.0;
for (SupportVector v : vectors) {
double Z = v.g - gm;
double k = k(v1.i, v.i);
double curv = km + v.k - 2.0 * k;
if (curv <= 0.0) curv = TAU;
double mu = Z / curv;
if ((mu > 0.0 && v.alpha < v.cmax) || (mu < 0.0 && v.alpha > v.cmin)) {
double gain = Z * mu;
if (gain > best) {
best = gain;
v2 = v;
k12 = k;
}
}
}
}
if (v1 == null) {
// determine imin
double km = v2.k;
double gm = v2.g;
double best = 0.0;
for (SupportVector v : vectors) {
double Z = gm - v.g;
double k = k(v2.i, v.i);
double curv = km + v.k - 2.0 * k;
if (curv <= 0.0) curv = TAU;
double mu = Z / curv;
if ((mu > 0.0 && v.alpha > v.cmin) || (mu < 0.0 && v.alpha < v.cmax)) {
double gain = Z * mu;
if (gain > best) {
best = gain;
v1 = v;
k12 = k;
}
}
}
}
if (v1 == null || v2 == null) {
return false;
}
if (Double.isNaN(k12)) {
k12 = kernel.k(v1.x, v2.x);
}
// Perform update
double step = getStep(v1, v2, k12);
v1.alpha -= step;
v2.alpha += step;
for (SupportVector v : vectors) {
v.g -= step * (k(v2.i, v.i) - k(v1.i, v.i));
}
// optimality test
minmaxflag = false;
minmax();
b = (gmax + gmin) / 2;
return gmax - gmin > epsgr;
}
/**
* Calculates the maximal search step.
* @param v1 the first vector of working set.
* @param v2 the second vector of working set.
* @param k12 the kernel value k(v1, v2).
* @return the search step.
*/
private double getStep(SupportVector v1, SupportVector v2, double k12) {
// Determine curvature
double curv = v1.k + v2.k - 2 * k12;
if (curv <= 0.0) curv = TAU;
double step = (v2.g - v1.g) / curv;
// Determine maximal step
if (step >= 0.0) {
double delta = v1.alpha - v1.cmin;
if (delta < step) {
step = delta;
}
delta = v2.cmax - v2.alpha;
if (delta < step) {
step = delta;
}
} else {
double delta = v2.cmin - v2.alpha;
if (delta > step) {
step = delta;
}
delta = v1.alpha - v1.cmax;
if (delta > step) {
step = delta;
}
}
return step;
}
/**
* Process a new sample.
* @return true if x is added to support vectors.
*/
private boolean process(int i, T x, int y) {
if (y != 1 && y != -1) {
throw new IllegalArgumentException("Invalid label: " + y);
}
// Bail out if already in expansion
for (SupportVector v : vectors) {
if (v.x == x) return false;
}
double[] cache = new double[K.length];
Arrays.fill(cache, Double.NaN);
// Compute gradient
double g = y;
for (SupportVector v : vectors) {
// Parallel stream may cause unreproducible results due to
// different numeric round-off because of different data
// partitions (i.e. different number of cores/threads).
// The speedup of parallel stream is also limited as
// the number of support vectors is often small.
double k = kernel.k(v.x, x);
cache[v.i] = k;
g -= v.alpha * k;
}
// Decide insertion
minmax();
if (gmin < gmax) {
if ((y > 0 && g < gmin) || (y < 0 && g > gmax)) {
return false;
}
}
// Insert
SupportVector v = new SupportVector<>(i, x, y, 0.0, g, Cp, Cn, kernel.k(x, x));
vectors.add(v);
K[i] = cache;
// Process
if (y > 0) {
smo(null, v, 0.0);
} else {
smo(v, null, 0.0);
}
minmaxflag = false;
return true;
}
/**
* Reprocess support vectors.
* @param epsgr the tolerance of convergence test.
* @return true if NOT pass convergence test.
*/
private boolean reprocess(double epsgr) {
boolean status = smo(null, null, epsgr);
evict();
return status;
}
/**
* Call reprocess until converge.
*/
private void finish() {
finish(tol, vectors.size());
int bsv = 0;
for (SupportVector v : vectors) {
if (v.alpha == v.cmin || v.alpha == v.cmax) {
bsv++;
}
}
logger.info("{} samples, {} support vectors, {} bounded", x.length, vectors.size(), bsv);
}
/**
* Call reprocess until converge.
* @param epsgr the tolerance of convergence test.
* @param maxIter the maximum number of iterations.
*/
private void finish(double epsgr, int maxIter) {
logger.info("Finalizing the training by reprocess.");
for (int count = 1; count <= maxIter && smo(null, null, epsgr); count++) {
if (count % 1000 == 0) {
logger.info("{} reprocess iterations.", count);
}
}
evict();
}
/**
* Removes support vectors from the kernel expansion.
* Online kernel classifiers usually experience considerable problems
* with noisy data sets. Each iteration is likely to cause a mistake
* because the best achievable error rate for such problems
* is high. The number of support vectors increases very rapidly and
* potentially causes overfitting and poor convergence. Support vector
* removal criteria avoid this drawback.
*/
private void evict() {
minmax();
vectors.removeIf(v -> {
if (MathEx.isZero(v.alpha, 1E-4)) {
if ((v.g >= gmax && 0 >= v.cmax) || (v.g <= gmin && 0 <= v.cmin)) {
K[v.i] = null;
return true;
}
}
return false;
});
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy