smile.base.svm.OCSVM Maven / Gradle / Ivy
/*
* Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Smile. If not, see .
*/
package smile.base.svm;
import java.util.stream.IntStream;
import smile.math.MathEx;
import smile.math.kernel.MercerKernel;
/**
* One-class support vector machine.
*
* @param the data type of model input objects.
*
* @author Haifeng Li
*/
public class OCSVM {
private static final org.slf4j.Logger logger = org.slf4j.LoggerFactory.getLogger(OCSVM.class);
/**
* The default value for K_tt + K_ss - 2 * K_ts if kernel is not positive.
*/
private static final double TAU = 1E-12;
/**
* The kernel function.
*/
private final MercerKernel kernel;
/**
* The parameter sets an upper bound on the fraction of outliers
* (training examples regarded out-of-class). It is also the lower
* bound on the number of training examples used as Support Vector.
*/
private final double nu;
/**
* The tolerance of convergence test.
*/
private final double tol;
/**
* The upper bound of Lagrangian multiplier 1 / (nu * n).
*/
private double C;
/**
* Support vectors.
*/
private T[] x;
/**
* Threshold of decision function.
*/
private double rho;
/**
* Lagrangian multiplier of support vector.
*/
private double[] alpha;
/**
* Ki * alpha.
*/
private double[] O;
/**
* The kernel matrix.
*/
private double[][] K;
/**
* Most violating pair.
* argmin gi of m_i < alpha_i
* argmax gi of alpha_i < M_i
* where m_i = min{0, y_i * C}
* and M_i = max{0, y_i * C}
*/
private int svmin = -1;
private int svmax = -1;
private double omin = Double.MAX_VALUE;
private double omax = -Double.MAX_VALUE;
/**
* Constructor.
* @param kernel the kernel function.
* @param nu the parameter sets an upper bound on the fraction of outliers
* (training examples regarded out-of-class) and it is a lower
* bound on the number of training examples used as Support Vector.
* @param tol the tolerance of convergence test.
*/
public OCSVM(MercerKernel kernel, double nu, double tol) {
if (nu <= 0 || nu > 1) {
throw new IllegalArgumentException("Invalid nu: " + nu);
}
if (tol <= 0.0) {
throw new IllegalArgumentException("Invalid tolerance of convergence test:" + tol);
}
this.kernel = kernel;
this.nu = nu;
this.tol = tol;
}
/**
* Fits a one-class support vector machine.
* @param x training instances.
* @return the model.
*/
public KernelMachine fit(T[] x) {
this.x = x;
int n = x.length;
K = new double[n][n];
IntStream.range(0, n).parallel().forEach(i -> {
T xi = x[i];
double[] Ki = K[i];
for (int j = 0; j < n; j++) {
Ki[j] = kernel.k(xi, x[j]);
}
});
// Initialize support vectors.
int vl = (int) Math.round(nu * n);
C = 1.0 / vl;
int[] index = MathEx.permutate(n);
alpha = new double[n];
for (int i = 0; i < vl; i++) {
alpha[index[i]] = C;
}
O = new double[n];
rho = Double.NEGATIVE_INFINITY;
for (int i = 0; i < n; i++) {
double[] Ki = K[i];
for (int j = 0; j < n; j++) {
O[i] += Ki[j] * alpha[j];
}
if (alpha[i] > 0 && rho < O[i]) {
rho = O[i];
}
}
minmax();
int phase = Math.min(n, 1000);
for (int count = 1; smo(tol); count++) {
if (count % phase == 0) {
logger.info("{} SMO iterations", count);
}
}
int nsv = 0;
int bsv = 0;
for (int i = 0; i < n; i++) {
if (alpha[i] > 0.0) {
nsv++;
if (alpha[i] == C) {
bsv++;
}
}
}
@SuppressWarnings("unchecked")
T[] vectors = (T[]) java.lang.reflect.Array.newInstance(x.getClass().getComponentType(), nsv);
double[] weight = new double[nsv];
// Since we want the final decision function to evaluate to 1 for points
// which lie on the margin, we need to subtract this tol from the offset rho.
// Note that in the paper, the decision function is w * x - rho. But in
// other SVM and KernelMachine class, we have w * x + b. So we set b = -rho.
double b = -(rho - tol);
for (int i = 0, j = 0; i < n; i++) {
if (alpha[i] > 0.0) {
vectors[j] = x[i];
weight[j++] = alpha[i];
}
}
logger.info("{} samples, {} support vectors, {} bounded", n, nsv, bsv);
return new KernelMachine<>(kernel, vectors, weight, b);
}
/**
* Find support vectors with smallest (of I_up) and largest (of I_down) gradients.
*/
private void minmax() {
svmin = -1;
svmax = -1;
omin = Double.MAX_VALUE;
omax = -Double.MAX_VALUE;
int n = x.length;
for (int i = 0; i < n; i++) {
double oi = O[i];
double ai = alpha[i];
if (oi < omin && ai < C) {
svmin = i;
omin = oi;
}
if (oi > omax && ai > 0) {
svmax = i;
omax = oi;
}
}
}
/**
* Sequential minimal optimization.
*/
private boolean smo(double epsgr) {
int v1 = svmin;
int v2 = svmax;
// Second order working set selection.
int n = x.length;
if (v2 < 0) {
// determine imax
double O1 = O[v1];
double[] K1 = K[v1];
double k11 = K1[v1];
double best = 0.0;
for (int i = 0; i < n; i++) {
double Z = O[i] - O1;
double curv = k11 + K[i][i] - 2 * K1[i];
if (curv <= 0.0) curv = TAU;
double mu = Z / curv;
if (O[i] > O1 && alpha[i] > 0) {
double gain = -Z * mu;
if (gain < best) {
best = gain;
v2 = i;
}
}
}
}
if (v1 < 0) {
// determine imin
double O2 = O[v2];
double[] K2 = K[v2];
double k22 = K2[v2];
double best = 0.0;
for (int i = 0; i < n; i++) {
double Z = O2 - O[i];
double curv = k22 + K[i][i] - 2.0 * K2[i];
if (curv <= 0.0) curv = TAU;
double mu = Z / curv;
if (O[i] < O2 && alpha[i] < C) {
double gain = -Z * mu;
if (gain < best) {
best = gain;
v1 = i;
}
}
}
}
if (v1 < 0 || v2 < 0) return false;
double old_alpha1 = alpha[v1];
double old_alpha2 = alpha[v2];
double[] k1 = K[v1];
double[] k2 = K[v2];
// Determine curvature
double curv = K[v1][v1] + K[v2][v2] - 2 * K[v1][v2];
if (curv <= 0.0) curv = TAU;
double delta = (O[v1] - O[v2]) / curv;
double sum = alpha[v1] + alpha[v2];
alpha[v2] += delta;
alpha[v1] -= delta;
if (sum > C) {
if (alpha[v1] > C) {
alpha[v1] = C;
alpha[v2] = sum - C;
}
} else {
if (alpha[v2] < 0) {
alpha[v2] = 0;
alpha[v1] = sum;
}
}
if (sum > C) {
if (alpha[v2] > C) {
alpha[v2] = C;
alpha[v1] = sum - C;
}
} else {
if (alpha[v1] < 0) {
alpha[v1] = 0.0;
alpha[v2] = sum;
}
}
double delta_alpha1 = alpha[v1] - old_alpha1;
double delta_alpha2 = alpha[v2] - old_alpha2;
for (int i = 0; i < n; i++) {
O[i] += k1[i] * delta_alpha1 + k2[i] * delta_alpha2;
}
rho = (omax + omin) / 2;
// optimality test
minmax();
return omax - omin > epsgr;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy