smile.base.svm.SVR Maven / Gradle / Ivy
The newest version!
/*
* Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Smile. If not, see .
*/
package smile.base.svm;
import java.util.ArrayList;
import java.util.List;
import smile.math.MathEx;
import smile.math.kernel.MercerKernel;
import smile.regression.KernelMachine;
/**
* Epsilon support vector regression. Like SVMs for classification, the model
* produced by SVR depends only on a subset of the training data, because
* the cost function ignores any training data close to the model prediction
* (within a threshold ε).
*
* References
*
* - A. J Smola and B. Scholkopf. A Tutorial on Support Vector Regression.
* - Gary William Flake and Steve Lawrence. Efficient SVM Regression Training with SMO.
* - Christopher J. C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery 2:121-167, 1998.
* - John Platt. Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines.
* - Rong-En Fan, Pai-Hsuen, and Chih-Jen Lin. Working Set Selection Using Second Order Information for Training Support Vector Machines. JMLR, 6:1889-1918, 2005.
* - Antoine Bordes, Seyda Ertekin, Jason Weston and Leon Bottou. Fast Kernel Classifiers with Online and Active Learning, Journal of Machine Learning Research, 6:1579-1619, 2005.
* - Tobias Glasmachers and Christian Igel. Second Order SMO Improves SVM Online and Active Learning.
* - Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a Library for Support Vector Machines.
*
*
* @param the data type of model input objects.
*
* @author Haifeng Li
*/
public class SVR {
private static final org.slf4j.Logger logger = org.slf4j.LoggerFactory.getLogger(SVR.class);
/**
* The default value for K_tt + K_ss - 2 * K_ts if kernel is not positive.
*/
private static final double TAU = 1E-12;
/**
* The kernel function.
*/
private final MercerKernel kernel;
/**
* The loss function error threshold.
*/
private final double eps;
/**
* The soft margin penalty parameter.
*/
private final double C;
/**
* The tolerance of convergence test.
*/
private final double tol;
/**
* Support vectors.
*/
private List vectors;
/**
* Threshold of decision function.
*/
private double b = 0.0;
/**
* Most violating pair.
* argmin gi of m_i < alpha_i
* argmax gi of alpha_i < M_i
* where m_i = min{0, y_i * C}
* and M_i = max{0, y_i * C}
*/
private SupportVector svmin = null;
private SupportVector svmax = null;
private double gmin = Double.MAX_VALUE;
private double gmax = -Double.MAX_VALUE;
private int gminindex;
private int gmaxindex;
/**
* The kernel matrix.
*/
private double[][] K;
/**
* Support vector.
*/
class SupportVector {
/**
* The index of support vector in training samples.
*/
final int i;
/**
* Support vector.
*/
final T x;
/**
* Lagrangian multipliers of support vector.
*/
final double[] alpha = new double[2];
/**
* Gradient y - Ki * alpha.
*/
final double[] g = new double[2];
/**
* Kernel value k(x, x)
*/
final double k;
/**
* Constructor.
* @param i the index of support vector.
* @param x the support vector.
* @param y the response variable.
*/
SupportVector(int i, T x, double y) {
this.i = i;
this.x = x;
g[0] = eps + y;
g[1] = eps - y;
k = kernel.k(x, x);
}
}
/**
* Constructor.
* @param kernel the kernel function.
* @param eps the loss function error threshold.
* @param C the soft margin penalty parameter.
* @param tol the tolerance of convergence test.
*/
public SVR(MercerKernel kernel, double eps, double C, double tol) {
if (eps <= 0) {
throw new IllegalArgumentException("Invalid error threshold: " + eps);
}
if (C < 0) {
throw new IllegalArgumentException("Invalid soft margin penalty: " + C);
}
if (tol <= 0.0) {
throw new IllegalArgumentException("Invalid tolerance of convergence test:" + tol);
}
this.kernel = kernel;
this.eps = eps;
this.C = C;
this.tol = tol;
}
/**
* Fits an epsilon support vector regression model.
* @param x training instances.
* @param y response variable.
* @return the model.
*/
public KernelMachine fit(T[] x, double[] y) {
if (x.length != y.length) {
throw new IllegalArgumentException(String.format("The sizes of X and Y don't match: %d != %d", x.length, y.length));
}
int n = x.length;
K = new double[n][];
// Initialize support vectors.
vectors = new ArrayList<>(n);
for (int i = 0; i < n; i++) {
vectors.add(new SupportVector(i, x[i], y[i]));
}
minmax();
int phase = Math.min(n, 1000);
for (int count = 1; smo(tol); count++) {
if (count % phase == 0) {
logger.info("{} SMO iterations", count);
}
}
int nsv = 0;
int bsv = 0;
for (int i = 0; i < n; i++) {
SupportVector v = vectors.get(i);
if (v.alpha[0] == v.alpha[1]) {
vectors.set(i, null);
} else {
nsv++;
if (v.alpha[0] == C || v.alpha[1] == C) {
bsv++;
}
}
}
double[] alpha = new double[nsv];
@SuppressWarnings("unchecked")
T[] sv = (T[]) java.lang.reflect.Array.newInstance(x.getClass().getComponentType(), nsv);
int i = 0;
for (SupportVector v : vectors) {
if (v != null) {
sv[i] = v.x;
alpha[i++] = v.alpha[1] - v.alpha[0];
}
}
logger.info("{} samples, {} support vectors, {} bounded", n, nsv, bsv);
return new KernelMachine<>(kernel, sv, alpha, b);
}
/**
* Find support vectors with smallest (of I_up) and largest (of I_down) gradients.
*/
private void minmax() {
gmin = Double.MAX_VALUE;
gmax = -Double.MAX_VALUE;
for (SupportVector v : vectors) {
double g = -v.g[0];
double a = v.alpha[0];
if (g < gmin && a > 0.0) {
svmin = v;
gmin = g;
gminindex = 0;
}
if (g > gmax && a < C) {
svmax = v;
gmax = g;
gmaxindex = 0;
}
g = v.g[1];
a = v.alpha[1];
if (g < gmin && a < C) {
svmin = v;
gmin = g;
gminindex = 1;
}
if (g > gmax && a > 0.0) {
svmax = v;
gmax = g;
gmaxindex = 1;
}
}
}
/**
* Computes the row of kernel matrix for a vector i.
* @param v data vector to evaluate kernel matrix.
*/
private double[] gram(SupportVector v) {
if (K[v.i] == null) {
double[] ki = new double[vectors.size()];
vectors.stream().parallel().forEach(vi -> ki[vi.i] = kernel.k(v.x, vi.x));
K[v.i] = ki;
}
return K[v.i];
}
/**
* Sequential minimal optimization.
*/
private boolean smo(double epsgr) {
SupportVector v1 = svmax;
int i = gmaxindex;
double old_alpha_i = v1.alpha[i];
double[] k1 = gram(v1);
SupportVector v2 = svmin;
int j = gminindex;
double old_alpha_j = v2.alpha[j];
// Second order working set selection.
double best = 0.0;
double gi = i == 0 ? -v1.g[0] : v1.g[1];
for (SupportVector v : vectors) {
double curv = v1.k + v.k - 2 * k1[v.i];
if (curv <= 0.0) curv = TAU;
double gj = -v.g[0];
if (v.alpha[0] > 0.0 && gj < gi) {
double gain = -MathEx.pow2(gi - gj) / curv;
if (gain < best) {
best = gain;
v2 = v;
j = 0;
old_alpha_j = v2.alpha[0];
}
}
gj = v.g[1];
if (v.alpha[1] < C && gj < gi) {
double gain = -MathEx.pow2(gi - gj) / curv;
if (gain < best) {
best = gain;
v2 = v;
j = 1;
old_alpha_j = v2.alpha[1];
}
}
}
double[] k2 = gram(v2);
// Determine curvature
double curv = v1.k + v2.k - 2 * k1[v2.i];
if (curv <= 0.0) curv = TAU;
if (i != j) {
double delta = (-v1.g[i] - v2.g[j]) / curv;
double diff = v1.alpha[i] - v2.alpha[j];
v1.alpha[i] += delta;
v2.alpha[j] += delta;
if (diff > 0.0) {
// Region III
if (v2.alpha[j] < 0.0) {
v2.alpha[j] = 0.0;
v1.alpha[i] = diff;
}
} else {
// Region IV
if (v1.alpha[i] < 0.0) {
v1.alpha[i] = 0.0;
v2.alpha[j] = -diff;
}
}
if (diff > 0) {
// Region I
if (v1.alpha[i] > C) {
v1.alpha[i] = C;
v2.alpha[j] = C - diff;
}
} else {
// Region II
if (v2.alpha[j] > C) {
v2.alpha[j] = C;
v1.alpha[i] = C + diff;
}
}
} else {
double delta = (v1.g[i] - v2.g[j]) / curv;
double sum = v1.alpha[i] + v2.alpha[j];
v1.alpha[i] -= delta;
v2.alpha[j] += delta;
if (sum > C) {
if (v1.alpha[i] > C) {
v1.alpha[i] = C;
v2.alpha[j] = sum - C;
}
} else {
if (v2.alpha[j] < 0) {
v2.alpha[j] = 0;
v1.alpha[i] = sum;
}
}
if (sum > C) {
if (v2.alpha[j] > C) {
v2.alpha[j] = C;
v1.alpha[i] = sum - C;
}
} else {
if (v1.alpha[i] < 0) {
v1.alpha[i] = 0.0;
v2.alpha[j] = sum;
}
}
}
double delta_alpha_i = v1.alpha[i] - old_alpha_i;
double delta_alpha_j = v2.alpha[j] - old_alpha_j;
int si = 2 * i - 1;
int sj = 2 * j - 1;
for (SupportVector v : vectors) {
v.g[0] -= si * k1[v.i] * delta_alpha_i + sj * k2[v.i] * delta_alpha_j;
v.g[1] += si * k1[v.i] * delta_alpha_i + sj * k2[v.i] * delta_alpha_j;
}
// optimality test
minmax();
b = -(gmax + gmin) / 2;
return gmax - gmin > epsgr;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy