smile.classification.ClassLabels Maven / Gradle / Ivy
/*
* Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Smile. If not, see .
*/
package smile.classification;
import java.io.Serial;
import java.io.Serializable;
import java.util.Arrays;
import java.util.stream.IntStream;
import smile.data.Dataset;
import smile.data.measure.Measure;
import smile.data.measure.NominalScale;
import smile.data.vector.BaseVector;
import smile.math.MathEx;
import smile.util.IntSet;
/**
* Map arbitrary class labels to [0, k), where k is the number of classes.
*
* @author Haifeng Li
*/
public class ClassLabels implements Serializable {
@Serial
private static final long serialVersionUID = 2L;
/** The number of classes. */
public final int k;
/** The class labels. */
public final IntSet classes;
/** The sample class id in [0, k). */
public final int[] y;
/** The number of samples per classes. */
public final int[] ni;
/** The estimated priori probabilities. */
public final double[] priori;
/**
* Constructor.
* @param k The number of classes.
* @param y The sample class id in [0, k).
* @param classes the class label encoder.
*/
public ClassLabels(int k, int[] y, IntSet classes) {
this.k = k;
this.y = y;
this.classes = classes;
this.ni = count(y, k);
priori = new double[k];
double n = y.length;
for (int i = 0; i < k; i++) {
priori[i] = ni[i] / n;
}
}
/**
* Returns the nominal scale of the class labels.
* @return the nominal scale of the class labels.
*/
public NominalScale scale() {
String[] values = new String[classes.size()];
for (int i = 0; i < classes.size(); i++) {
values[i] = String.valueOf(classes.valueOf(i));
}
return new NominalScale(values);
}
/**
* Maps the class labels to index.
* @param y the sample labels.
* @return the indices of labels.
*/
public int[] indexOf(int[] y) {
int[] x = new int[y.length];
for (int i = 0; i < y.length; i++) {
x[i] = classes.indexOf(y[i]);
}
return x;
}
/**
* Fits the class label mapping.
* @param data the sample instances.
* @return the class label mapping.
*/
public static ClassLabels fit(Dataset, Integer> data) {
int n = data.size();
int[] y = new int[n];
for (int i = 0; i < n; i++) {
y[i] = data.get(i).y();
}
return fit(y);
}
/**
* Fits the class label mapping.
* @param y the sample labels.
* @return the class label mapping.
*/
public static ClassLabels fit(int[] y) {
int[] labels = MathEx.unique(y);
Arrays.sort(labels);
int k = labels.length;
if (k < 2) {
throw new IllegalArgumentException("Only one class.");
}
IntSet encoder = new IntSet(labels);
if (labels[0] == 0 && labels[k-1] == k-1) {
return new ClassLabels(k, y, encoder);
} else {
return new ClassLabels(k, Arrays.stream(y).map(encoder::indexOf).toArray(), encoder);
}
}
/**
* Fits the class label mapping.
* @param response the sample labels.
* @return the class label mapping.
*/
public static ClassLabels fit(BaseVector, ?, ?> response) {
int[] y = response.toIntArray();
Measure measure = response.measure();
if (measure instanceof NominalScale scale) {
int k = scale.size();
int[] labels = IntStream.range(0, k).toArray();
IntSet encoder = new IntSet(labels);
return new ClassLabels(k, y, encoder);
}
return fit(y);
}
/**
* Returns the sample size per class.
* @param y sample labels in [0, k)
* @param k the number of classes.
* @return the sample size per class.
*/
private static int[] count(int[] y, int k) {
int[] ni = new int[k];
for (int yi : y) {
ni[yi]++;
}
return ni;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy