All Downloads are FREE. Search and download functionalities are using the official Maven repository.

smile.classification.DiscreteNaiveBayes Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
 *
 * Smile is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Smile is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Smile.  If not, see .
 */

package smile.classification;

import smile.math.MathEx;
import smile.util.IntSet;
import smile.util.SparseArray;
import smile.stat.distribution.Distribution;

import java.io.Serial;
import java.util.Arrays;

/**
 * Naive Bayes classifier for document classification in NLP.
 * A naive Bayes classifier is a simple probabilistic
 * classifier based on applying Bayes' theorem with strong (naive) independence
 * assumptions. Depending on the precise nature of the probability model, naive
 * Bayes classifiers can be trained very efficiently in a supervised learning
 * setting.
 * 

* In spite of their naive design and apparently over-simplified assumptions, * naive Bayes classifiers have worked quite well in many complex real-world * situations and are very popular in Natural Language Processing (NLP). *

* For document classification in NLP, there are two major different ways we can set * up a naive Bayes classifier: multinomial model and Bernoulli model. The * multinomial model generates one term from the vocabulary in each position * of the document. The multivariate Bernoulli model or Bernoulli model * generates an indicator for each term of the vocabulary, either indicating * presence of the term in the document or indicating absence. * Of the two models, the Bernoulli model is particularly sensitive to noise * features. A Bernoulli naive Bayes classifier requires some form of feature * selection or else its accuracy will be low. *

* The different generation models imply different estimation strategies and * different classification rules. The Bernoulli model estimates as the * fraction of documents of class that contain term. In contrast, the * multinomial model estimates as the fraction of tokens or fraction of * positions in documents of class that contain term. When classifying a * test document, the Bernoulli model uses binary occurrence information, * ignoring the number of occurrences, whereas the multinomial model keeps * track of multiple occurrences. As a result, the Bernoulli model typically * makes many mistakes when classifying long documents. However, it was reported * that the Bernoulli model works better in sentiment analysis. *

* The models also differ in how non-occurring terms are used in classification. * They do not affect the classification decision in the multinomial model; * but in the Bernoulli model the probability of nonoccurrence is factored * in when computing. This is because only the Bernoulli model models * absence of terms explicitly. *

* A third setting is Polya Urn model which simply * add twice for what is seen in training data instead of one time. * See reference for more details. * *

References

*
    *
  1. Rennie, Jason D., et al. Tackling the poor assumptions of naive Bayes text classifiers. ICML, 2003.
  2. *
  3. Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schutze. Introduction to Information Retrieval, Chapter 13, 2009.
  4. *
  5. Kevin P. Murphy. Machina Learning A Probability Perspective, Chapter 3, 2012.
  6. *
* * @see Distribution * @see LDA * @see QDA * @see RDA * * @author Haifeng Li */ public class DiscreteNaiveBayes extends AbstractClassifier { @Serial private static final long serialVersionUID = 2L; private static final org.slf4j.Logger logger = org.slf4j.LoggerFactory.getLogger(DiscreteNaiveBayes.class); /** * The generation models of naive Bayes classifier. * For document classification in NLP, there are two different ways we can set * up a naive Bayes classifier: multinomial model and Bernoulli model. The * multinomial model generates one term from the vocabulary in each position * of the document. The multivariate Bernoulli model or Bernoulli model * generates an indicator for each term of the vocabulary, either indicating * presence of the term in the document or indicating absence. */ public enum Model { /** * The document multinomial model generates one term from the * vocabulary in each position of the document. */ MULTINOMIAL, /** * The document Bernoulli model generates an indicator for each * term of the vocabulary, either indicating presence of the term * in the document or indicating absence. */ BERNOULLI, /** * The document Polya Urn model is similar to MULTINOMIAL but * different in the conditional probability update during learning. * It simply adds twice for what is seen in training data instead of * one time. */ POLYAURN, /** * Complement Naive Bayes. * To deal with skewed training data, CNB estimates parameters * of a class c using data from all classes except c. CNB's estimates * may be more effective because each uses a more even amount of * training data per class, which will lessen the bias in the weight * estimates. */ CNB, /** * Weight-normalized Complement Naive Bayes. * In practice, it is often the case that weights tend to lean toward * one class or the other. When the magnitude of Naive Bayes' weight * vector is larger in one class than the others, the larger magnitude * class may be preferred. To correct for the fact that some classes * have greater dependencies, WCNB normalizes the weight vectors. */ WCNB, /** * Transformed Weight-normalized Complement Naive Bayes. Before feeding * into WCNB, TWCNB transforms term frequencies including TF transform, * IDF transform, and length normalization. Because of IDF, TWCNB * supports only batch mode. */ TWCNB } /** * Fudge to keep nonzero. */ private static final double EPSILON = 1E-20; /** * The generation model of naive Bayes. */ private final Model model; /** * The number of classes. */ private final int k; /** * The number of independent variables. */ private final int p; /** * The priori probability of each class. */ private final double[] priori; /** * Amount of add-k smoothing of evidence. By default, we use add-one or * Laplace smoothing, which simply adds one to each count to eliminate zeros. * Add-one smoothing can be interpreted as a uniform prior (each term occurs * once for each class) that is then updated as evidence from the training * data comes in. */ private final double sigma; /** * If true, don't update the priori during learning. */ private final boolean fixedPriori; /** * The total number of documents. */ private int n; /** * The number of documents in each class. */ private final int[] nc; /** * The number of terms per class. */ private final int[] nt; /** * The number of each term per class. */ private final int[][] ntc; /** * The log conditional probabilities for document classification. */ private final double[][] logcondprob; /** * Constructor of naive Bayes classifier for document classification. * The priori probability of each class will be learned from data. * By default, we use add-one/Laplace smoothing, which simply adds one * to each count to eliminate zeros. Add-one smoothing can be interpreted * as a uniform prior (each term occurs once for each class) that is * then updated as evidence from the training data comes in. * * @param model the generation model of naive Bayes classifier. * @param k the number of classes. * @param p the dimensionality of input space. */ public DiscreteNaiveBayes(Model model, int k, int p) { this(model, k, p, 1.0, IntSet.of(k)); } /** * Constructor of naive Bayes classifier for document classification. * The priori probability of each class will be learned from data. * Add-k smoothing. * * @param model the generation model of naive Bayes classifier. * @param k the number of classes. * @param p the dimensionality of input space. * @param sigma the prior count of add-k smoothing of evidence. * @param labels the class label encoder. */ public DiscreteNaiveBayes(Model model, int k, int p, double sigma, IntSet labels) { super(labels); if (k < 2) { throw new IllegalArgumentException("Invalid number of classes: " + k); } if (p <= 0) { throw new IllegalArgumentException("Invalid dimension: " + p); } if (sigma < 0) { throw new IllegalArgumentException("Invalid add-k smoothing parameter: " + sigma); } this.model = model; this.k = k; this.p = p; this.sigma = sigma; fixedPriori = false; priori = new double[k]; n = 0; nc = new int[k]; nt = new int[k]; ntc = new int[k][p]; logcondprob = new double[k][p]; } /** * Constructor of naive Bayes classifier for document classification. * By default, we use add-one/Laplace smoothing, which simply adds one * to each count to eliminate zeros. Add-one smoothing can be interpreted * as a uniform prior (each term occurs once for each class) that is * then updated as evidence from the training data comes in. * * @param model the generation model of naive Bayes classifier. * @param priori the priori probability of each class. * @param p the dimensionality of input space. */ public DiscreteNaiveBayes(Model model, double[] priori, int p) { this(model, priori, p, 1.0, IntSet.of(priori.length)); } /** * Constructor of naive Bayes classifier for document classification. * Add-k smoothing. * * @param model the generation model of naive Bayes classifier. * @param priori the priori probability of each class. * @param p the dimensionality of input space. * @param sigma the prior count of add-k smoothing of evidence. * @param labels the class label encoder. */ public DiscreteNaiveBayes(Model model, double[] priori, int p, double sigma, IntSet labels) { super(labels); if (p <= 0) { throw new IllegalArgumentException("Invalid dimension: " + p); } if (sigma < 0) { throw new IllegalArgumentException("Invalid add-k smoothing parameter: " + sigma); } if (priori.length < 2) { throw new IllegalArgumentException("Invalid number of classes: " + priori.length); } double sum = 0.0; for (double pr : priori) { if (pr <= 0.0 || pr >= 1.0) { throw new IllegalArgumentException("Invalid priori probability: " + pr); } sum += pr; } if (Math.abs(sum - 1.0) > 1E-5) { throw new IllegalArgumentException("The sum of priori probabilities is not one: " + sum); } this.model = model; this.k = priori.length; this.p = p; this.sigma = sigma; this.priori = priori; fixedPriori = true; n = 0; nc = new int[k]; nt = new int[k]; ntc = new int[k][p]; logcondprob = new double[k][p]; } /** * Returns a priori probabilities. * @return a priori probabilities. */ public double[] priori() { return priori; } /** * Online learning of naive Bayes classifier on a sequence, * which is modeled as a bag of words. Note that this method is NOT * applicable for naive Bayes classifier with general generation model. * * @param x training instance. * @param y training label. */ @Override public void update(int[] x, int y) { if (!isGoodInstance(x)) { return; } if (model == Model.TWCNB) { throw new UnsupportedOperationException("TWCNB supports only batch learning"); } y = classes.indexOf(y); switch (model) { case MULTINOMIAL: case CNB: case WCNB: for (int i = 0; i < p; i++) { ntc[y][i] += x[i]; nt[y] += x[i]; } break; case POLYAURN: for (int i = 0; i < p; i++) { ntc[y][i] += x[i] * 2; nt[y] += x[i] * 2; } break; case BERNOULLI: for (int i = 0; i < p; i++) { if (x[i] > 0) { ntc[y][i]++; } } break; default: // we should never reach here throw new IllegalStateException("Unknown model: " + model); } n++; nc[y]++; update(); } /** * Online learning of naive Bayes classifier on a sequence, * which is modeled as a bag of words. Note that this method is NOT * applicable for naive Bayes classifier with general generation model. * * @param x training instance in sparse format. * @param y training label. */ public void update(SparseArray x, int y) { if (!isGoodInstance(x)) { return; } if (model == Model.TWCNB) { throw new UnsupportedOperationException("TWCNB supports only batch learning"); } y = classes.indexOf(y); switch (model) { case MULTINOMIAL: case CNB: case WCNB: for (SparseArray.Entry e : x) { int ex = (int) e.x; ntc[y][e.i] += ex; nt[y] += ex; } break; case POLYAURN: for (SparseArray.Entry e : x) { int ex = (int) e.x; ntc[y][e.i] += ex * 2; nt[y] += ex * 2; } break; case BERNOULLI: for (SparseArray.Entry e : x) { if (e.x > 0) { ntc[y][e.i]++; } } break; default: // we should never reach here throw new IllegalStateException("Unknown model: " + model); } n++; nc[y]++; update(); } /** * Batch learning of naive Bayes classifier on sequences, * which are modeled as a bag of words. Note that this method is NOT * applicable for naive Bayes classifier with general generation model. * * @param x training instances. * @param y training labels. */ @Override public void update(int[][] x, int[] y) { switch (model) { case MULTINOMIAL: case CNB: case WCNB: for (int i = 0; i < x.length; i++) { if (!isGoodInstance(x[i])) { continue; } int yi = classes.indexOf(y[i]); for (int j = 0; j < p; j++) { ntc[yi][j] += x[i][j]; nt[yi] += x[i][j]; } n++; nc[yi]++; } break; case TWCNB: // The number of documents where the term occurs. int[] ni = new int[p]; // The transformed term frequency in a document. double[] d = new double[p]; for (int[] doc : x) { for (int i = 0; i < p; i++) { if (doc[i] > 0) ni[i]++; } } // The number of (good) documents. double N = 0; for (int[] xi : x) { if (isGoodInstance(xi)) N++; } for (int i = 0; i < x.length; i++) { int[] xi = x[i]; if (!isGoodInstance(xi)) continue; Arrays.fill(d, 0.0); for (int t = 0; t < p; t++) { if (xi[t] > 0) { d[t] = Math.log(1 + xi[t]) * Math.log(N / ni[t]); } } MathEx.unitize2(d); int yi = y[i]; for (int t = 0; t < p; t++) { logcondprob[yi][t] += d[t]; } } double[] rsum = MathEx.rowSums(logcondprob); double[] csum = MathEx.colSums(logcondprob); double sum = MathEx.sum(csum); for (int c = 0; c < k; c++) { for (int t = 0; t < p; t++) { logcondprob[c][t] = Math.log((csum[t] - logcondprob[c][t] + sigma) / (sum - rsum[c] + sigma * p)); } } for (int c = 0; c < k; c++) { MathEx.unitize1(logcondprob[c]); } break; case POLYAURN: for (int i = 0; i < x.length; i++) { if (!isGoodInstance(x[i])) { continue; } int yi = classes.indexOf(y[i]); for (int j = 0; j < p; j++) { ntc[yi][j] += x[i][j] * 2; nt[yi] += x[i][j] * 2; } n++; nc[yi]++; } break; case BERNOULLI: for (int i = 0; i < x.length; i++) { if (!isGoodInstance(x[i])) { continue; } int yi = classes.indexOf(y[i]); for (int j = 0; j < p; j++) { if (x[i][j] > 0) { ntc[yi][j]++; } } n++; nc[yi]++; } break; default: // we should never reach here throw new IllegalStateException("Unknown model: " + model); } update(); } /** * Batch learning of naive Bayes classifier on sequences, * which are modeled as a bag of words. Note that this method is NOT * applicable for naive Bayes classifier with general generation model. * * @param x training instances. * @param y training labels. */ public void update(SparseArray[] x, int[] y) { switch (model) { case MULTINOMIAL: case CNB: case WCNB: for (int i = 0; i < x.length; i++) { if (!isGoodInstance(x[i])) { continue; } int yi = classes.indexOf(y[i]); for (SparseArray.Entry e : x[i]) { int ex = (int) e.x; ntc[yi][e.i] += ex; nt[yi] += ex; } n++; nc[yi]++; } break; case TWCNB: // The number of documents where the term occurs. int[] ni = new int[p]; // The transformed term frequency in a document. double[] d = new double[p]; for (SparseArray doc : x) { for (SparseArray.Entry e : doc) { if (e.x > 0) ni[e.i]++; } } // The number of (good) documents. double N = 0; for (SparseArray xi : x) { if (isGoodInstance(xi)) N++; } for (int i = 0; i < x.length; i++) { SparseArray xi = x[i]; if (!isGoodInstance(xi)) continue; Arrays.fill(d, 0.0); for (SparseArray.Entry e : xi) { if (e.x > 0) { d[e.i] = Math.log(1 + e.x) * Math.log(N / ni[e.i]); } } MathEx.unitize2(d); int yi = y[i]; for (int t = 0; t < p; t++) { logcondprob[yi][t] += d[t]; } } double[] rsum = MathEx.rowSums(logcondprob); double[] csum = MathEx.colSums(logcondprob); double sum = MathEx.sum(csum); for (int c = 0; c < k; c++) { for (int t = 0; t < p; t++) { logcondprob[c][t] = Math.log((csum[t] - logcondprob[c][t] + sigma) / (sum - rsum[c] + sigma * p)); } } for (int c = 0; c < k; c++) { MathEx.unitize1(logcondprob[c]); } break; case POLYAURN: for (int i = 0; i < x.length; i++) { if (!isGoodInstance(x[i])) { continue; } int yi = classes.indexOf(y[i]); for (SparseArray.Entry e : x[i]) { int ex = (int) e.x; ntc[yi][e.i] += ex * 2; nt[yi] += ex * 2; } n++; nc[yi]++; } break; case BERNOULLI: for (int i = 0; i < x.length; i++) { if (!isGoodInstance(x[i])) { continue; } int yi = classes.indexOf(y[i]); for (SparseArray.Entry e : x[i]) { if (e.x > 0) { ntc[yi][e.i]++; } } n++; nc[yi]++; } break; default: // we should never reach here throw new IllegalStateException("Unknown model: " + model); } update(); } /** * Update conditional probabilities. */ private void update() { if (!fixedPriori) { for (int c = 0; c < k; c++) { priori[c] = (nc[c] + EPSILON) / (n + k * EPSILON); } } switch (model) { case MULTINOMIAL: case POLYAURN: for (int c = 0; c < k; c++) { for (int t = 0; t < p; t++) { logcondprob[c][t] = Math.log((ntc[c][t] + sigma) / (nt[c] + sigma * p)); } } break; case BERNOULLI: for (int c = 0; c < k; c++) { for (int t = 0; t < p; t++) { logcondprob[c][t] = Math.log((ntc[c][t] + sigma) / (nc[c] + sigma * 2)); } } break; case CNB: case WCNB: long ntsum = MathEx.sum(nt); long[] ntcsum = MathEx.colSums(ntc); for (int c = 0; c < k; c++) { for (int t = 0; t < p; t++) { logcondprob[c][t] = Math.log((ntcsum[t] - ntc[c][t] + sigma) / (ntsum - nt[c] + sigma * p)); } } if (model == Model.WCNB) { for (int c = 0; c < k; c++) { MathEx.unitize1(logcondprob[c]); } } break; case TWCNB: // nop break; default: // we should never reach here throw new IllegalStateException("Unknown model: " + model); } } @Override public boolean soft() { return true; } @Override public boolean online() { return true; } /** * Predict the class of an instance. * * @param x the instance to be classified. * @return the predicted class label. */ @Override public int predict(int[] x) { return predict(x, new double[k]); } /** * Predict the class of an instance. * * @param x the instance to be classified. * @return the predicted class label. If the instance is of all zeros, * returns Integer.MIN_VALUE. */ @Override public int predict(int[] x, double[] posteriori) { if (!isGoodInstance(x)) { return Integer.MIN_VALUE; } for (int i = 0; i < k; i++) { double logprob; switch (model) { case MULTINOMIAL: case POLYAURN: logprob = Math.log(priori[i]); for (int j = 0; j < p; j++) { if (x[j] > 0) { logprob += x[j] * logcondprob[i][j]; } } break; case BERNOULLI: logprob = Math.log(priori[i]); for (int j = 0; j < p; j++) { if (x[j] > 0) { logprob += logcondprob[i][j]; } else { logprob += Math.log(1.0 - Math.exp(logcondprob[i][j])); } } break; case CNB: case WCNB: case TWCNB: logprob = 0.0; for (int j = 0; j < p; j++) { if (x[j] > 0) { logprob -= x[j] * logcondprob[i][j]; } } break; default: // we should never reach here throw new IllegalStateException("Unknown model: " + model); } posteriori[i] = logprob; } MathEx.softmax(posteriori); return MathEx.whichMax(posteriori); } /** * Return true if the instance has any positive features. */ private boolean isGoodInstance(int[] x) { if (x.length != p) { throw new IllegalArgumentException(String.format("Invalid vector size: %d", x.length)); } boolean any = false; for (int xi : x) { if (xi > 0) { any = true; break; } } return any; } /** * In case of MULTINOMIAL and BERNOULLI, check if the instance * has any positive values of features. */ private boolean isGoodInstance(SparseArray x) { return !x.isEmpty(); } /** * Predict the class of an instance. * * @param x the instance to be classified. * @return the predicted class label. For MULTINOMIAL and BERNOULLI models, * returns -1 if the instance does not contain any feature words. */ public int predict(SparseArray x) { return predict(x, new double[k]); } /** * Predict the class of an instance. * * @param x the instance to be classified. * @param posteriori the array to store a posteriori probabilities on output. * @return the predicted class label. If the instance is of all zeros, return * returns Integer.MIN_VALUE. */ public int predict(SparseArray x, double[] posteriori) { if (!isGoodInstance(x)) { return Integer.MIN_VALUE; } for (int i = 0; i < k; i++) { double logprob; switch (model) { case MULTINOMIAL: case POLYAURN: logprob = Math.log(priori[i]); for (SparseArray.Entry e : x) { if (e.x > 0) { logprob += e.x * logcondprob[i][e.i]; } } break; case BERNOULLI: logprob = Math.log(priori[i]); for (SparseArray.Entry e : x) { if (e.x > 0) { logprob += logcondprob[i][e.i]; } else { logprob += Math.log(1.0 - Math.exp(logcondprob[i][e.i])); } } break; case CNB: case WCNB: case TWCNB: logprob = 0.0; for (SparseArray.Entry e : x) { if (e.x > 0) { logprob -= e.x * logcondprob[i][e.i]; } } break; default: // we should never reach here throw new IllegalStateException("Unknown model: " + model); } posteriori[i] = logprob; } MathEx.softmax(posteriori); return classes.valueOf(MathEx.whichMax(posteriori)); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy