smile.classification.IsotonicRegressionScaling Maven / Gradle / Ivy
The newest version!
/*
* Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Smile. If not, see .
*/
package smile.classification;
import java.io.Serial;
import java.io.Serializable;
import java.util.Arrays;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.stream.Collectors;
import java.util.stream.IntStream;
import smile.sort.QuickSort;
/**
* A method to calibrate decision function value to probability.
* Compared to Platt's scaling, this approach fits a piecewise-constant
* non-decreasing function instead of logistic regression.
*
* References
*
* - Alexandru Niculescu-Mizil and Rich Caruana. Predicting Good Probabilities With Supervised Learning. ICML, 2005.
*
*
* @author Haifeng Li
*/
public class IsotonicRegressionScaling implements Serializable {
@Serial
private static final long serialVersionUID = 2L;
/**
* Step-wise constant function.
*/
private static class StepwiseConstant {
final double lo;
double hi;
double val;
int weight;
/** Constructor. */
StepwiseConstant(double lo, double hi, double val, int weight) {
this.lo = lo;
this.hi = hi;
this.val = val;
this.weight = weight;
}
}
/** The step-wise buckets of function values in ascending order. */
private final double[] buckets;
/** The probability of instances falling into the corresponding buckets. */
private final double[] prob;
/**
* Constructor.
* @param buckets the step-wise buckets of function values in ascending order.
* @param prob the probability of instances falling into the corresponding buckets.
*/
public IsotonicRegressionScaling(double[] buckets, double[] prob) {
this.buckets = buckets.clone();
this.prob = prob;
// Set the last value to max value so that index is always in [0, n).
int n = buckets.length;
this.buckets[n-1] = Double.POSITIVE_INFINITY;
}
/**
* Trains the Isotonic Regression scaling.
*
* @param scores The predicted scores.
* @param y The training labels.
* @return the model.
*/
public static IsotonicRegressionScaling fit(double[] scores, int[] y) {
double[] sortedScores = Arrays.copyOf(scores, scores.length);
int[] sortedY = Arrays.copyOf(y, y.length);
QuickSort.sort(sortedScores, sortedY, sortedScores.length);
LinkedList steps = new LinkedList<>();
for (int i = 0; i < sortedScores.length; i++) {
steps.add(new StepwiseConstant(sortedScores[i], sortedScores[i], sortedY[i] > 0 ? 1 : 0, 1));
}
boolean isotonic = false;
while (!isotonic) {
isotonic = true;
Iterator iter = steps.iterator();
StepwiseConstant prev = iter.next();
while (iter.hasNext()) {
StepwiseConstant g0 = prev;
StepwiseConstant g1 = iter.next();
if (g0.val >= g1.val) {
g0.hi = g1.hi;
int weight = g0.weight + g1.weight;
g0.val = (g0.weight * g0.val + g1.weight * g1.val) / weight;
g0.weight = weight;
iter.remove();
isotonic = false;
} else {
prev = g1;
}
}
}
int n = steps.size();
double[] buckets = new double[n];
double[] prob = new double[n];
Iterator iter = steps.iterator();
for (int i = 0; iter.hasNext(); i++) {
StepwiseConstant step = iter.next();
buckets[i] = step.hi;
prob[i] = step.val;
}
return new IsotonicRegressionScaling(buckets, prob);
}
/**
* Returns the posterior probability estimate P(y = 1 | x).
*
* @param y the binary classifier output score.
* @return the estimated probability.
*/
public double predict(double y) {
int index = Arrays.binarySearch(buckets, y);
if (index < 0) index = -index - 1;
return prob[index];
}
@Override
public String toString() {
return IntStream.range(0, buckets.length).mapToObj(i -> String.format("(%.2f, %.2f%%)", buckets[i], 100*prob[i])).collect(Collectors.joining(", ", "IsotonicRegressionScaling[", "]"));
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy