smile.classification.NaiveBayes Maven / Gradle / Ivy
The newest version!
/*
* Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Smile. If not, see .
*/
package smile.classification;
import smile.math.MathEx;
import smile.stat.distribution.Distribution;
import smile.util.IntSet;
import java.io.Serial;
/**
* Naive Bayes classifier. A naive Bayes classifier is a simple probabilistic
* classifier based on applying Bayes' theorem with strong (naive) independence
* assumptions. Depending on the precise nature of the probability model, naive
* Bayes classifiers can be trained very efficiently in a supervised learning
* setting.
*
* For a general purpose naive Bayes classifier without any assumptions
* about the underlying distribution of each variable, we don't provide
* a learning method to infer the variable distributions from the training data.
* Instead, the users can fit any appropriate distributions on the data by
* themselves with various {@link Distribution} classes. Although the {@link #predict}
* method takes an array of double values as a general form of independent variables,
* the users are free to use any discrete distributions to model categorical or
* ordinal random variables.
*
*
References
*
* - Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schutze. Introduction to Information Retrieval, Chapter 13, 2009.
* - Kevin P. Murphy. Machina Learning A Probability Perspective, Chapter 3, 2012.
*
*
* @see Distribution
* @see LDA
* @see QDA
* @see RDA
*
* @author Haifeng Li
*/
public class NaiveBayes extends AbstractClassifier {
@Serial
private static final long serialVersionUID = 2L;
/**
* The number of classes.
*/
private final int k;
/**
* The number of independent variables.
*/
private final int p;
/**
* The priori probability of each class.
*/
private final double[] priori;
/**
* The conditional distribution for general purpose naive Bayes classifier.
*/
private final Distribution[][] prob;
/**
* Constructor of general naive Bayes classifier.
*
* @param priori the priori probability of each class.
* @param condprob the conditional distribution of each variable in
* each class. In particular, condprob[i][j] is the conditional
* distribution P(xj | class i).
*/
public NaiveBayes(double[] priori, Distribution[][] condprob) {
this(priori, condprob, IntSet.of(priori.length));
}
/**
* Constructor of general naive Bayes classifier.
*
* @param priori the priori probability of each class.
* @param condprob the conditional distribution of each variable in
* each class. In particular, condprob[i][j] is the conditional
* distribution P(xj | class i).
* @param labels the class label encoder.
*/
public NaiveBayes(double[] priori, Distribution[][] condprob, IntSet labels) {
super(labels);
if (priori.length != condprob.length) {
throw new IllegalArgumentException("The number of priori probabilities and that of the classes are not same.");
}
double sum = 0.0;
for (double pr : priori) {
if (pr <= 0.0 || pr >= 1.0) {
throw new IllegalArgumentException("Invalid priori probability: " + pr);
}
sum += pr;
}
if (Math.abs(sum - 1.0) > 1E-5) {
throw new IllegalArgumentException("The sum of priori probabilities is not one: " + sum);
}
this.k = priori.length;
this.p = condprob[0].length;
this.priori = priori;
this.prob = condprob;
}
/**
* Returns a priori probabilities.
* @return a priori probabilities.
*/
public double[] priori() {
return priori;
}
/**
* Predict the class of an instance.
*
* @param x the instance to be classified.
* @return the predicted class label.
*/
@Override
public int predict(double[] x) {
return predict(x, new double[k]);
}
@Override
public boolean soft() {
return true;
}
/**
* Predict the class of an instance.
*
* @param x the instance to be classified.
* @param posteriori the array to store a posteriori probabilities on output.
* @return the predicted class label.
*/
@Override
public int predict(double[] x, double[] posteriori) {
if (x.length != p) {
throw new IllegalArgumentException(String.format("Invalid input vector size: %d", x.length));
}
for (int i = 0; i < k; i++) {
double logprob = Math.log(priori[i]);
for (int j = 0; j < p; j++) {
logprob += prob[i][j].logp(x[j]);
}
posteriori[i] = logprob;
}
double Z = 0.0;
double max = MathEx.max(posteriori);
for (int i = 0; i < k; i++) {
posteriori[i] = Math.exp(posteriori[i] - max);
Z += posteriori[i];
}
for (int i = 0; i < k; i++) {
posteriori[i] /= Z;
}
return classes.valueOf(MathEx.whichMax(posteriori));
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy