All Downloads are FREE. Search and download functionalities are using the official Maven repository.

smile.classification.NaiveBayes Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
 *
 * Smile is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Smile is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Smile.  If not, see .
 */

package smile.classification;

import smile.math.MathEx;
import smile.stat.distribution.Distribution;
import smile.util.IntSet;

import java.io.Serial;

/**
 * Naive Bayes classifier. A naive Bayes classifier is a simple probabilistic
 * classifier based on applying Bayes' theorem with strong (naive) independence
 * assumptions. Depending on the precise nature of the probability model, naive
 * Bayes classifiers can be trained very efficiently in a supervised learning
 * setting.
 * 

* For a general purpose naive Bayes classifier without any assumptions * about the underlying distribution of each variable, we don't provide * a learning method to infer the variable distributions from the training data. * Instead, the users can fit any appropriate distributions on the data by * themselves with various {@link Distribution} classes. Although the {@link #predict} * method takes an array of double values as a general form of independent variables, * the users are free to use any discrete distributions to model categorical or * ordinal random variables. * *

References

*
    *
  1. Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schutze. Introduction to Information Retrieval, Chapter 13, 2009.
  2. *
  3. Kevin P. Murphy. Machina Learning A Probability Perspective, Chapter 3, 2012.
  4. *
* * @see Distribution * @see LDA * @see QDA * @see RDA * * @author Haifeng Li */ public class NaiveBayes extends AbstractClassifier { @Serial private static final long serialVersionUID = 2L; /** * The number of classes. */ private final int k; /** * The number of independent variables. */ private final int p; /** * The priori probability of each class. */ private final double[] priori; /** * The conditional distribution for general purpose naive Bayes classifier. */ private final Distribution[][] prob; /** * Constructor of general naive Bayes classifier. * * @param priori the priori probability of each class. * @param condprob the conditional distribution of each variable in * each class. In particular, condprob[i][j] is the conditional * distribution P(xj | class i). */ public NaiveBayes(double[] priori, Distribution[][] condprob) { this(priori, condprob, IntSet.of(priori.length)); } /** * Constructor of general naive Bayes classifier. * * @param priori the priori probability of each class. * @param condprob the conditional distribution of each variable in * each class. In particular, condprob[i][j] is the conditional * distribution P(xj | class i). * @param labels the class label encoder. */ public NaiveBayes(double[] priori, Distribution[][] condprob, IntSet labels) { super(labels); if (priori.length != condprob.length) { throw new IllegalArgumentException("The number of priori probabilities and that of the classes are not same."); } double sum = 0.0; for (double pr : priori) { if (pr <= 0.0 || pr >= 1.0) { throw new IllegalArgumentException("Invalid priori probability: " + pr); } sum += pr; } if (Math.abs(sum - 1.0) > 1E-5) { throw new IllegalArgumentException("The sum of priori probabilities is not one: " + sum); } this.k = priori.length; this.p = condprob[0].length; this.priori = priori; this.prob = condprob; } /** * Returns a priori probabilities. * @return a priori probabilities. */ public double[] priori() { return priori; } /** * Predict the class of an instance. * * @param x the instance to be classified. * @return the predicted class label. */ @Override public int predict(double[] x) { return predict(x, new double[k]); } @Override public boolean soft() { return true; } /** * Predict the class of an instance. * * @param x the instance to be classified. * @param posteriori the array to store a posteriori probabilities on output. * @return the predicted class label. */ @Override public int predict(double[] x, double[] posteriori) { if (x.length != p) { throw new IllegalArgumentException(String.format("Invalid input vector size: %d", x.length)); } for (int i = 0; i < k; i++) { double logprob = Math.log(priori[i]); for (int j = 0; j < p; j++) { logprob += prob[i][j].logp(x[j]); } posteriori[i] = logprob; } double Z = 0.0; double max = MathEx.max(posteriori); for (int i = 0; i < k; i++) { posteriori[i] = Math.exp(posteriori[i] - max); Z += posteriori[i]; } for (int i = 0; i < k; i++) { posteriori[i] /= Z; } return classes.valueOf(MathEx.whichMax(posteriori)); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy