All Downloads are FREE. Search and download functionalities are using the official Maven repository.

smile.classification.PlattScaling Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
 *
 * Smile is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Smile is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Smile.  If not, see .
 */

package smile.classification;

import java.io.Serial;
import java.io.Serializable;
import static java.lang.Math.abs;
import static java.lang.Math.exp;
import static java.lang.Math.log;

/**
 * Platt scaling or Platt calibration is a way of transforming the outputs
 * of a classification model into a probability distribution over classes.
 * The method was invented by John Platt in the context of support vector
 * machines, but can be applied to other classification models.
 * Platt scaling works by fitting a logistic regression model to
 * a classifier's scores.
 * 

* Platt suggested using the Levenberg–Marquardt algorithm to optimize * the parameters, but a Newton algorithm was later proposed that should * be more numerically stable, which is implemented in this class. * *

References

*
    *
  1. John Platt. Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods. Advances in large margin classifiers. 10 (3): 61–74.
  2. *
* * @author Haifeng Li */ public class PlattScaling implements Serializable { @Serial private static final long serialVersionUID = 2L; private static final org.slf4j.Logger logger = org.slf4j.LoggerFactory.getLogger(PlattScaling.class); /** The scaling parameter. */ private final double alpha; /** The scaling parameter. */ private final double beta; /** * Constructor. P(y = 1 | x) = 1 / (1 + exp(alpha * f(x) + beta)) * @param alpha The scaling parameter. * @param beta The scaling parameter. */ public PlattScaling(double alpha, double beta) { this.alpha = alpha; this.beta = beta; } /** * Returns the posterior probability estimate P(y = 1 | x). * * @param y the binary classifier output score. * @return the estimated probability. */ public double scale(double y) { double fApB = y * alpha + beta; if (fApB >= 0) return exp(-fApB) / (1.0 + exp(-fApB)); else return 1.0 / (1 + exp(fApB)); } /** * Trains the Platt scaling. * @param scores The predicted scores. * @param y The training labels. * @return the model. */ public static PlattScaling fit(double[] scores, int[] y) { return fit(scores, y, 100); } /** * Trains the Platt scaling. * @param scores The predicted scores. * @param y The training labels. * @param maxIters The maximal number of iterations. * @return the model. */ public static PlattScaling fit(double[] scores, int[] y, int maxIters) { int l = scores.length; double prior1 = 0, prior0 = 0; int i; for (i = 0; i < l; i++) { if (y[i] > 0) prior1 += 1; else prior0 += 1; } double minStep = 1e-10; // Minimal step taken in line search double sigma = 1e-12; // For numerically strict PD of Hessian double eps = 1e-5; double hiTarget = (prior1 + 1.0) / (prior1 + 2.0); double loTarget = 1 / (prior0 + 2.0); double[] t = new double[l]; // Initial Point and Initial Fun Value double alpha = 0.0; double beta = Math.log((prior0 + 1.0) / (prior1 + 1.0)); double fval = 0.0; for (i = 0; i < l; i++) { if (y[i] > 0) t[i] = hiTarget; else t[i] = loTarget; double fApB = scores[i] * alpha + beta; if (fApB >= 0) fval += t[i] * fApB + log(1 + exp(-fApB)); else fval += (t[i] - 1) * fApB + log(1 + exp(fApB)); } int iter = 0; for (; iter < maxIters; iter++) { // Update Gradient and Hessian (use H' = H + sigma I) double h11 = sigma; // numerically ensures strict PD double h22 = sigma; double h21 = 0.0; double g1 = 0.0; double g2 = 0.0; for (i = 0; i < l; i++) { double fApB = scores[i] * alpha + beta; double p, q; if (fApB >= 0) { p = exp(-fApB) / (1.0 + exp(-fApB)); q = 1.0 / (1.0 + exp(-fApB)); } else { p = 1.0 / (1.0 + exp(fApB)); q = exp(fApB) / (1.0 + exp(fApB)); } double d2 = p * q; h11 += scores[i] * scores[i] * d2; h22 += d2; h21 += scores[i] * d2; double d1 = t[i] - p; g1 += scores[i] * d1; g2 += d1; } // Stopping Criteria if (abs(g1) < eps && abs(g2) < eps) break; // Finding Newton direction: -inv(H') * g double det = h11 * h22 - h21 * h21; double dA = -(h22 * g1 - h21 * g2) / det; double dB = -(-h21 * g1 + h11 * g2) / det; double gd = g1 * dA + g2 * dB; double stepSize = 1.0; // Line Search while (stepSize >= minStep) { double newA = alpha + stepSize * dA; double newB = beta + stepSize * dB; // New function value double newf = 0.0; for (i = 0; i < l; i++) { double fApB = scores[i] * newA + newB; if (fApB >= 0) newf += t[i] * fApB + log(1 + exp(-fApB)); else newf += (t[i] - 1) * fApB + log(1 + exp(fApB)); } // Check sufficient decrease if (newf < fval + 0.0001 * stepSize * gd) { alpha = newA; beta = newB; fval = newf; break; } else stepSize = stepSize / 2.0; } if (stepSize < minStep) { logger.error("Line search fails."); break; } } if (iter >= maxIters) { logger.warn("Reaches maximal iterations"); } return new PlattScaling(alpha, beta); } /** * Fits Platt Scaling to estimate posteriori probabilities. * * @param model the binary-class model to fit Platt scaling. * @param x training samples. * @param y training labels. * @param the data type. * @return the model. */ public static PlattScaling fit(Classifier model, T[] x, int[] y) { int n = y.length; double[] scores = new double[n]; for (int i = 0; i < n; i++) { scores[i] = model.score(x[i]); } return fit(scores, y); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy