All Downloads are FREE. Search and download functionalities are using the official Maven repository.

smile.clustering.GMeans Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
 *
 * Smile is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Smile is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Smile.  If not, see .
 */

package smile.clustering;

import java.io.Serial;
import java.util.ArrayList;
import java.util.Arrays;
import smile.math.MathEx;
import smile.sort.QuickSort;
import smile.stat.distribution.GaussianDistribution;

/**
 * G-Means clustering algorithm, an extended K-Means which tries to
 * automatically determine the number of clusters by normality test.
 * The G-means algorithm is based on a statistical test for the hypothesis
 * that a subset of data follows a Gaussian distribution. G-means runs
 * k-means with increasing k in a hierarchical fashion until the test accepts
 * the hypothesis that the data assigned to each k-means center are Gaussian.
 * 
 * 

References

*
    *
  1. G. Hamerly and C. Elkan. Learning the k in k-means. NIPS, 2003.
  2. *
* * @see KMeans * @see XMeans * * @author Haifeng Li */ public class GMeans extends CentroidClustering { @Serial private static final long serialVersionUID = 2L; private static final org.slf4j.Logger logger = org.slf4j.LoggerFactory.getLogger(GMeans.class); /** * Constructor. * @param distortion the total distortion. * @param centroids the centroids of each cluster. * @param y the cluster labels. */ public GMeans(double distortion, double[][] centroids, int[] y) { super(distortion, centroids, y); } @Override protected double distance(double[] x, double[] y) { return MathEx.squaredDistance(x, y); } /** * Clustering data with the number of clusters * determined by G-Means algorithm automatically. * @param data the input data of which each row is an observation. * @param kmax the maximum number of clusters. * @return the model. */ public static GMeans fit(double[][] data, int kmax) { return fit(data, kmax, 100, 1E-4); } /** * Clustering data with the number of clusters * determined by G-Means algorithm automatically. * @param data the input data of which each row is an observation. * @param kmax the maximum number of clusters. * @param maxIter the maximum number of iterations for k-means. * @param tol the tolerance of k-means convergence test. * @return the model. */ public static GMeans fit(double[][] data, int kmax, int maxIter, double tol) { if (kmax < 2) { throw new IllegalArgumentException("Invalid parameter kmax = " + kmax); } int n = data.length; int d = data[0].length; int k = 1; int[] size = new int[kmax]; size[0] = n; int[] y = new int[n]; double[][] sum = new double[kmax][d]; double[] mean = MathEx.colMeans(data); double[][] centroids = {mean}; double distortion = Arrays.stream(data).parallel().mapToDouble(x -> MathEx.squaredDistance(x, mean)).sum(); BBDTree bbd = new BBDTree(data); KMeans[] kmeans = new KMeans[kmax]; ArrayList centers = new ArrayList<>(); while (k < kmax) { centers.clear(); double[] score = new double[k]; for (int i = 0; i < k; i++) { int ni = size[i]; // don't split too small cluster. if (ni < 25) { logger.info("Cluster {} too small to split: {} observations", i, ni); score[i] = 0.0; kmeans[i] = null; continue; } double[][] subset = new double[ni][]; for (int j = 0, l = 0; j < n; j++) { if (y[j] == i) { subset[l++] = data[j]; } } kmeans[i] = KMeans.fit(subset, 2, maxIter, tol); double[] v = new double[d]; for (int j = 0; j < d; j++) { v[j] = kmeans[i].centroids[0][j] - kmeans[i].centroids[1][j]; } double vp = MathEx.dot(v, v); double[] x = new double[ni]; for (int j = 0; j < x.length; j++) { x[j] = MathEx.dot(subset[j], v) / vp; } // normalize to mean 0 and variance 1. MathEx.standardize(x); score[i] = AndersonDarling(x); logger.info("Cluster {} Anderson-Darling adjusted test statistic: {}", i, score[i]); } int[] index = QuickSort.sort(score); for (int i = 0; i < k; i++) { if (score[i] <= 1.8692) { centers.add(centroids[index[i]]); } } int m = centers.size(); for (int i = k; --i >= 0;) { if (score[i] > 1.8692) { if (centers.size() + i - m + 1 < kmax) { logger.info("Split cluster {}", index[i]); centers.add(kmeans[index[i]].centroids[0]); centers.add(kmeans[index[i]].centroids[1]); } else { centers.add(centroids[index[i]]); } } } // no more split. if (centers.size() == k) { logger.info("No more split. Finish with {} clusters", k); break; } k = centers.size(); centroids = centers.toArray(new double[k][]); double diff = Double.MAX_VALUE; for (int iter = 1; iter <= maxIter && diff > tol; iter++) { double wcss = bbd.clustering(centroids, sum, size, y); diff = distortion - wcss; distortion = wcss; } logger.info("Distortion with {} clusters: {}", k, distortion); } return new GMeans(distortion, centroids, y); } /** * Calculates the Anderson-Darling statistic for one-dimensional normality test. * * @param x the observations to test if drawn from a Gaussian distribution. */ private static double AndersonDarling(double[] x) { int n = x.length; GaussianDistribution gaussian = GaussianDistribution.getInstance(); Arrays.sort(x); for (int i = 0; i < n; i++) { x[i] = gaussian.cdf(x[i]); // in case overflow when taking log later. if (x[i] == 0) x[i] = 0.0000001; if (x[i] == 1) x[i] = 0.9999999; } double A = 0.0; for (int i = 0; i < n; i++) { A -= (2*i+1) * (Math.log(x[i]) + Math.log(1-x[n-i-1])); } A = A / n - n; A *= (1 + 4.0/n - 25.0/(n*n)); return A; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy