All Downloads are FREE. Search and download functionalities are using the official Maven repository.

smile.clustering.KModes Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
 *
 * Smile is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Smile is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Smile.  If not, see .
 */

package smile.clustering;

import java.io.Serial;
import java.util.Arrays;
import java.util.stream.IntStream;
import smile.math.MathEx;
import smile.math.distance.HammingDistance;
import smile.util.IntSet;

/**
 * K-Modes clustering. K-Modes is the binary equivalent for K-Means.
 * The mean update for centroids is replaced by the mode one which is
 * a majority vote among element of each cluster.
 *
 * 

References

*
    *
  1. Joshua Zhexue Huang. Clustering Categorical Data with k-Modes.
  2. *
* * @see KMeans * * @author Haifeng Li */ public class KModes extends CentroidClustering { @Serial private static final long serialVersionUID = 2L; private static final org.slf4j.Logger logger = org.slf4j.LoggerFactory.getLogger(KModes.class); /** * Constructor. * @param distortion the total distortion. * @param centroids the centroids of each cluster. * @param y the cluster labels. */ public KModes(double distortion, int[][] centroids, int[] y) { super(distortion, centroids, y); } @Override protected double distance(int[] x, int[] y) { return HammingDistance.d(x, y); } /** * Fits k-modes clustering. * @param data the input data of which each row is an observation. * @param k the number of clusters. * @return the model. */ public static KModes fit(int[][] data, int k) { return fit(data, k, 100); } /** * Fits k-modes clustering. * @param data the input data of which each row is an observation. * @param k the number of clusters. * @param maxIter the maximum number of iterations. * @return the model. */ public static KModes fit(int[][] data, int k, int maxIter) { if (k < 2) { throw new IllegalArgumentException("Invalid number of clusters: " + k); } if (maxIter <= 0) { throw new IllegalArgumentException("Invalid maximum number of iterations: " + maxIter); } int n = data.length; int d = data[0].length; Codec[] codec = IntStream.range(0, d).parallel().mapToObj(j -> { int[] x = new int[n]; for (int i = 0; i < n; i++) x[i] = data[i][j]; return new Codec(x); }).toArray(Codec[]::new); int[] y = new int[n]; int[][] medoids = new int[k][]; int[][] centroids = new int[k][d]; double distortion = MathEx.sum(seed(data, medoids, y, HammingDistance::d)); logger.info("Distortion after initialization: {}", (int) distortion); double diff = Integer.MAX_VALUE; for (int iter = 1; iter <= maxIter && diff > 0; iter++) { updateCentroids(centroids, data, y, codec); double wcss = assign(y, data, centroids, HammingDistance::d); logger.info("Distortion after {} iterations: {}", iter, (int) wcss); diff = distortion - wcss; distortion = wcss; } // In case of early stop, we should recalculate centroids. if (diff > 0) { updateCentroids(centroids, data, y, codec); } return new KModes(distortion, centroids, y); } /** Maps column values to compact range. */ private static class Codec { /** The number of unique values. */ public final int k; /** The values in [0, k). */ public final int[] x; /** The map of value to index. */ public final IntSet encoder; public Codec(int[] x) { int[] y = MathEx.unique(x); Arrays.sort(y); this.x = x; this.k = y.length; this.encoder = new IntSet(y); if (y[0] != 0 || y[k-1] != k-1) { int n = x.length; for (int i = 0; i < n; i++) { x[i] = encoder.indexOf(x[i]); } } } /** Returns the original value. */ public int valueOf(int i) { return encoder.valueOf(i); } } /** * Calculates the new centroids in the new clusters. */ private static void updateCentroids(int[][] centroids, int[][] data, int[] y, Codec[] codec) { int n = data.length; int k = centroids.length; int d = centroids[0].length; IntStream.range(0, k).parallel().forEach(cluster -> { int[] centroid = centroids[cluster]; for (int j = 0; j < d; j++) { // constant column if (codec[j].k <= 1) continue; int[] count = new int[codec[j].k]; int[] x = codec[j].x; for (int i = 0; i < n; i++) { if (y[i] == cluster) { count[x[i]]++; } } centroid[j] = codec[j].valueOf(MathEx.whichMax(count)); } }); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy