smile.clustering.SpectralClustering Maven / Gradle / Ivy
The newest version!
/*
* Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Smile. If not, see .
*/
package smile.clustering;
import java.io.Serial;
import java.io.Serializable;
import java.util.stream.IntStream;
import smile.math.MathEx;
import smile.math.blas.UPLO;
import smile.math.matrix.ARPACK;
import smile.math.matrix.Matrix;
/**
* Spectral Clustering. Given a set of data points, the similarity matrix may
* be defined as a matrix S where Sij represents a measure of the
* similarity between points. Spectral clustering techniques make use of the
* spectrum of the similarity matrix of the data to perform dimensionality
* reduction for clustering in fewer dimensions. Then the clustering will
* be performed in the dimension-reduce space, in which clusters of non-convex
* shape may become tight. There are some intriguing similarities between
* spectral clustering methods and kernel PCA, which has been empirically
* observed to perform clustering.
*
* References
*
* - A.Y. Ng, M.I. Jordan, and Y. Weiss. On Spectral Clustering: Analysis and an algorithm. NIPS, 2001.
* - Marina Maila and Jianbo Shi. Learning segmentation by random walks. NIPS, 2000.
* - Deepak Verma and Marina Meila. A Comparison of Spectral Clustering Algorithms. 2003.
*
*
* @author Haifeng Li
*/
public class SpectralClustering extends PartitionClustering implements Serializable {
@Serial
private static final long serialVersionUID = 2L;
private static final org.slf4j.Logger logger = org.slf4j.LoggerFactory.getLogger(SpectralClustering.class);
/**
* The distortion in feature space.
*/
public final double distortion;
/**
* Constructor.
* @param distortion the total distortion.
* @param k the number of clusters.
* @param y the cluster labels.
*/
public SpectralClustering(double distortion, int k, int[] y) {
super(k, y);
this.distortion = distortion;
}
/**
* Spectral graph clustering.
* @param W the adjacency matrix of graph, which will be modified.
* @param k the number of clusters.
* @return the model.
*/
public static SpectralClustering fit(Matrix W, int k) {
return fit(W, k, 100, 1E-4);
}
/**
* Spectral graph clustering.
* @param W the adjacency matrix of graph, which will be modified.
* @param k the number of clusters.
* @param maxIter the maximum number of iterations for k-means.
* @param tol the tolerance of k-means convergence test.
* @return the model.
*/
public static SpectralClustering fit(Matrix W, int k, int maxIter, double tol) {
if (k < 2) {
throw new IllegalArgumentException("Invalid number of clusters: " + k);
}
int n = W.nrow();
double[] D = W.colSums();
for (int i = 0; i < n; i++) {
if (D[i] == 0.0) {
throw new IllegalArgumentException("Isolated vertex: " + i);
}
D[i] = 1.0 / Math.sqrt(D[i]);
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < i; j++) {
double w = D[i] * W.get(i, j) * D[j];
W.set(i, j, w);
W.set(j, i, w);
}
}
W.uplo(UPLO.LOWER);
Matrix.EVD eigen = ARPACK.syev(W, ARPACK.SymmOption.LA, k);
double[][] Y = eigen.Vr.toArray();
for (int i = 0; i < n; i++) {
MathEx.unitize2(Y[i]);
}
KMeans kmeans = KMeans.fit(Y, k, maxIter, tol);
return new SpectralClustering(kmeans.distortion, k, kmeans.y);
}
/**
* Spectral clustering the data.
* @param data the input data of which each row is an observation.
* @param k the number of clusters.
* @param sigma the smooth/width parameter of Gaussian kernel, which is
* a somewhat sensitive parameter. To search for the best
* setting, one may pick the value that gives the tightest
* clusters (smallest distortion) in feature space.
* @return the model.
*/
public static SpectralClustering fit(double[][] data, int k, double sigma) {
return fit(data, k, sigma, 100, 1E-4);
}
/**
* Spectral clustering the data.
* @param data the input data of which each row is an observation.
* @param k the number of clusters.
* @param sigma the smooth/width parameter of Gaussian kernel, which is
* a somewhat sensitive parameter. To search for the best
* setting, one may pick the value that gives the tightest
* clusters (smallest distortion) in feature space.
* @param maxIter the maximum number of iterations for k-means.
* @param tol the tolerance of k-means convergence test.
* @return the model.
*/
public static SpectralClustering fit(double[][] data, int k, double sigma, int maxIter, double tol) {
if (k < 2) {
throw new IllegalArgumentException("Invalid number of clusters: " + k);
}
if (sigma <= 0.0) {
throw new IllegalArgumentException("Invalid standard deviation of Gaussian kernel: " + sigma);
}
int n = data.length;
double gamma = -0.5 / (sigma * sigma);
Matrix W = new Matrix(n, n);
for (int i = 0; i < n; i++) {
for (int j = 0; j < i; j++) {
double w = Math.exp(gamma * MathEx.squaredDistance(data[i], data[j]));
W.set(i, j, w);
W.set(j, i, w);
}
}
return fit(W, k, maxIter, tol);
}
/**
* Spectral clustering with Nystrom approximation.
* @param data the input data of which each row is an observation.
* @param k the number of clusters.
* @param l the number of random samples for Nystrom approximation.
* @param sigma the smooth/width parameter of Gaussian kernel, which is
* a somewhat sensitive parameter. To search for the best
* setting, one may pick the value that gives the tightest
* clusters (smallest distortion) in feature space.
* @return the model.
*/
public static SpectralClustering fit(double[][] data, int k, int l, double sigma) {
return fit(data, k, l, sigma, 100, 1E-4);
}
/**
* Spectral clustering with Nystrom approximation.
* @param data the input data of which each row is an observation.
* @param k the number of clusters.
* @param l the number of random samples for Nystrom approximation.
* @param sigma the smooth/width parameter of Gaussian kernel, which is
* a somewhat sensitive parameter. To search for the best
* setting, one may pick the value that gives the tightest
* clusters (smallest distortion) in feature space.
* @param maxIter the maximum number of iterations for k-means.
* @param tol the tolerance of k-means convergence test.
* @return the model.
*/
public static SpectralClustering fit(double[][] data, int k, int l, double sigma, int maxIter, double tol) {
if (l < k || l >= data.length) {
throw new IllegalArgumentException("Invalid number of random samples: " + l);
}
if (k < 2) {
throw new IllegalArgumentException("Invalid number of clusters: " + k);
}
if (sigma <= 0.0) {
throw new IllegalArgumentException("Invalid standard deviation of Gaussian kernel: " + sigma);
}
int n = data.length;
double gamma = -0.5 / (sigma * sigma);
int[] index = MathEx.permutate(n);
double[][] x = new double[n][];
for (int i = 0; i < n; i++) {
x[i] = data[index[i]];
}
Matrix C = new Matrix(n, l);
double[] D = new double[n];
IntStream.range(0, n).parallel().forEach(i -> {
for (int j = 0; j < n; j++) {
if (i != j) {
double w = Math.exp(gamma * MathEx.squaredDistance(x[i], x[j]));
D[i] += w;
if (j < l) {
C.set(i, j, w);
}
}
}
});
for (int i = 0; i < n; i++) {
if (D[i] < 1E-4) {
logger.error("Small D[{}] = {}. The data may contain outliers.", i, D[i]);
}
D[i] = 1.0 / Math.sqrt(D[i]);
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < l; j++) {
C.set(i, j, D[i] * C.get(i, j) * D[j]);
}
}
Matrix W = C.submatrix(0, 0, l-1, l-1);
W.uplo(UPLO.LOWER);
Matrix.EVD eigen = ARPACK.syev(W, ARPACK.SymmOption.LA, k);
double[] e = eigen.wr;
double scale = Math.sqrt((double)l / n);
for (int i = 0; i < k; i++) {
if (e[i] <= 1E-8) {
throw new IllegalStateException("Non-positive eigen value: " + e[i]);
}
e[i] = scale / e[i];
}
Matrix U = eigen.Vr;
for (int i = 0; i < l; i++) {
for (int j = 0; j < k; j++) {
U.mul(i, j, e[j]);
}
}
double[][] Y = C.mm(U).toArray();
for (int i = 0; i < n; i++) {
MathEx.unitize2(Y[i]);
}
KMeans kmeans = KMeans.fit(Y, k, maxIter, tol);
int[] y = new int[n];
for (int i = 0; i < n; i++) {
y[index[i]] = kmeans.y[i];
}
return new SpectralClustering(kmeans.distortion, k, y);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy