smile.feature.extraction.ProbabilisticPCA Maven / Gradle / Ivy
The newest version!
/*
* Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Smile. If not, see .
*/
package smile.feature.extraction;
import smile.data.DataFrame;
import smile.math.MathEx;
import smile.math.blas.UPLO;
import smile.math.matrix.Matrix;
import java.io.Serial;
/**
* Probabilistic principal component analysis. Probabilistic PCA is
* a simplified factor analysis that employs a latent variable model
* with linear relationship:
*
* y ∼ W * x + μ + ε
*
* where latent variables x ∼ N(0, I)
, error (or noise)
* ε ∼ N(0, Ψ)
, and μ is the location
* term (mean). In probabilistic PCA, an isotropic noise model is used,
* i.e., noise variances constrained to be equal
* (Ψi = σ2
).
* A close form of estimation of above parameters can be obtained
* by maximum likelihood method.
*
* References
*
* - Michael E. Tipping and Christopher M. Bishop. Probabilistic Principal Component Analysis. Journal of the Royal Statistical Society. Series B (Statistical Methodology) 61(3):611-622, 1999.
*
*
* @see PCA
*
* @author Haifeng Li
*/
public class ProbabilisticPCA extends Projection {
@Serial
private static final long serialVersionUID = 2L;
/**
* The sample mean.
*/
private final double[] mu;
/**
* The projected sample mean.
*/
private final double[] pmu;
/**
* The variance of noise part.
*/
private final double noise;
/**
* The loading matrix.
*/
private final Matrix loading;
/**
* Constructor.
* @param noise the variance of noise.
* @param mu the mean of samples.
* @param loading the loading matrix.
* @param projection the projection matrix. Note that this is not
* the matrix W in the latent model.
* @param columns the columns to transform when applied on Tuple/DataFrame.
*/
public ProbabilisticPCA(double noise, double[] mu, Matrix loading, Matrix projection, String... columns) {
super(projection, "PPCA", columns);
this.noise = noise;
this.mu = mu;
this.loading = loading;
pmu = new double[projection.nrow()];
projection.mv(mu, pmu);
}
/**
* Returns the variable loading matrix, ordered from largest to smallest
* by corresponding eigenvalues.
* @return the variable loading matrix.
*/
public Matrix loadings() {
return loading;
}
/**
* Returns the center of data.
* @return the center of data.
*/
public double[] center() {
return mu;
}
/**
* Returns the variance of noise.
* @return the variance of noise.
*/
public double variance() {
return noise;
}
@Override
protected double[] postprocess(double[] x) {
MathEx.sub(x, pmu);
return x;
}
/**
* Fits probabilistic principal component analysis.
* @param data training data of which each row is a sample.
* @param k the number of principal component to learn.
* @param columns the columns to fit PCA. If empty, all columns
* will be used.
* @return the model.
*/
public static ProbabilisticPCA fit(DataFrame data, int k, String... columns) {
double[][] x = data.toArray(columns);
return fit(x, k, columns);
}
/**
* Fits probabilistic principal component analysis.
* @param data training data of which each row is a sample.
* @param k the number of principal component to learn.
* @param columns the columns to transform when applied on Tuple/DataFrame.
* @return the model.
*/
public static ProbabilisticPCA fit(double[][] data, int k, String... columns) {
int m = data.length;
int n = data[0].length;
double[] mu = MathEx.colMeans(data);
Matrix cov = new Matrix(n, n);
for (double[] datum : data) {
for (int i = 0; i < n; i++) {
for (int j = 0; j <= i; j++) {
cov.add(i, j, (datum[i] - mu[i]) * (datum[j] - mu[j]));
}
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j <= i; j++) {
cov.div(i, j, m);
cov.set(j, i, cov.get(i, j));
}
}
cov.uplo(UPLO.LOWER);
Matrix.EVD eigen = cov.eigen(false, true, true).sort();
double[] eigvalues = eigen.wr;
Matrix eigvectors = eigen.Vr;
double noise = 0.0;
for (int i = k; i < n; i++) {
noise += eigvalues[i];
}
noise /= (n - k);
Matrix loading = new Matrix(n, k);
for (int i = 0; i < n; i++) {
for (int j = 0; j < k; j++) {
loading.set(i, j, eigvectors.get(i, j) * Math.sqrt(eigvalues[j] - noise));
}
}
Matrix M = loading.ata();
M.addDiag(noise);
Matrix.Cholesky chol = M.cholesky(true);
Matrix Mi = chol.inverse();
Matrix projection = Mi.mt(loading);
return new ProbabilisticPCA(noise, mu, loading, projection, columns);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy