smile.feature.extraction.Projection Maven / Gradle / Ivy
/*
* Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Smile. If not, see .
*/
package smile.feature.extraction;
import java.util.stream.IntStream;
import smile.data.DataFrame;
import smile.data.Tuple;
import smile.data.transform.Transform;
import smile.data.type.DataTypes;
import smile.data.type.StructField;
import smile.data.type.StructType;
import smile.data.vector.DoubleVector;
import smile.math.matrix.Matrix;
/**
* A projection is a kind of feature extraction technique that transforms data
* from the input space to a feature space, linearly or non-linearly. Often,
* projections are used to reduce dimensionality, for example PCA and random
* projection. However, kernel-based methods, e.g. Kernel PCA, can actually map
* the data into a much higher dimensional space.
*
* @author Haifeng Li
*/
public class Projection implements Transform {
/**
* The projection matrix. The dimension reduced data
* can be obtained by y = W * x.
*/
public final Matrix projection;
/**
* The schema of output space.
*/
public final StructType schema;
/**
* The fields of input space.
*/
public final String[] columns;
/**
* Constructor.
* @param projection the projection matrix.
* @param prefix the output field name prefix.
* @param columns the input fields.
*/
public Projection(Matrix projection, String prefix, String... columns) {
this.projection = projection;
int p = projection.nrow();
StructField[] fields = IntStream.range(1, p+1)
.mapToObj(i -> new StructField(prefix + i, DataTypes.DoubleType))
.toArray(StructField[]::new);
this.schema = new StructType(fields);
this.columns = columns;
}
@Override
public Tuple apply(Tuple x) {
double[] y = apply(x.toArray(columns));
return Tuple.of(y, schema);
}
@Override
public DataFrame apply(DataFrame data) {
double[][] y = apply(data.toArray(columns));
int n = data.size();
int p = projection.nrow();
DoubleVector[] vectors = new DoubleVector[p];
for (int j = 0; j < p; j++) {
double[] x = new double[n];
for (int i = 0; i < x.length; i++) {
x[i] = y[i][j];
}
vectors[j] = DoubleVector.of(schema.field(j), x);
}
return DataFrame.of(vectors);
}
/**
* Project a data point to the feature space.
* @param x the data point.
* @return the projection in the feature space.
*/
public double[] apply(double[] x) {
return postprocess(projection.mv(preprocess(x)));
}
/**
* Project a set of data to the feature space.
* @param x the data set.
* @return the projection in the feature space.
*/
public double[][] apply(double[][] x) {
double[][] y = new double[x.length][];
for (int i = 0; i < x.length; i++) {
y[i] = apply(x[i]);
}
return y;
}
/**
* Preprocess the input vector before projection.
* @param x the input vector of projection.
* @return the preprocessed vector.
*/
protected double[] preprocess(double[] x) {
return x;
}
/**
* Postprocess the output vector after projection.
* @param x the output vector of projection.
* @return the postprocessed vector.
*/
protected double[] postprocess(double[] x) {
return x;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy