smile.feature.imputation.KMedoidsImputer Maven / Gradle / Ivy
The newest version!
package smile.feature.imputation;
import smile.clustering.CLARANS;
import smile.data.DataFrame;
import smile.data.Tuple;
import smile.data.transform.Transform;
import smile.data.type.StructType;
import smile.math.distance.Distance;
/**
* Missing value imputation by K-Medoids clustering. The k-medoids algorithm
* is an adaptation of the k-means algorithm. Rather than calculate the mean
* of the items in each cluster, a representative item, or medoid, is chosen
* for each cluster at each iteration. The missing values of an instance are
* replaced the corresponding ones of the nearest medoid.
*
* @author Haifeng Li
*/
public class KMedoidsImputer implements Transform {
/** The K-Medoids clustering. */
private final CLARANS kmedoids;
/**
* Constructor.
* @param kmedoids the K-Medoids clustering.
*/
public KMedoidsImputer(CLARANS kmedoids) {
this.kmedoids = kmedoids;
}
@Override
public Tuple apply(Tuple x) {
if (!SimpleImputer.hasMissing(x)) {
return x;
}
StructType schema = x.schema();
Tuple medioid = kmedoids.centroids[kmedoids.predict(x)];
return new smile.data.AbstractTuple() {
@Override
public Object get(int i) {
Object xi = x.get(i);
return SimpleImputer.isMissing(xi) ? medioid.get(i) : xi;
}
@Override
public StructType schema() {
return schema;
}
};
}
/**
* Fits the missing value imputation values.
* @param data the training data.
* @param k the number of clusters.
* @param distance the lambda of distance measure.
* @return the imputer.
*/
public static KMedoidsImputer fit(DataFrame data, Distance distance, int k) {
Tuple[] tuples = new Tuple[data.size()];
for (int i = 0; i < tuples.length; i++) {
tuples[i] = data.get(i);
}
CLARANS kmedoids = CLARANS.fit(tuples, distance, k);
return new KMedoidsImputer(kmedoids);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy