All Downloads are FREE. Search and download functionalities are using the official Maven repository.

smile.feature.selection.GAFE Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
 *
 * Smile is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Smile is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Smile.  If not, see .
 */

package smile.feature.selection;

import java.util.function.BiFunction;
import smile.classification.Classifier;
import smile.classification.DataFrameClassifier;
import smile.data.DataFrame;
import smile.data.formula.Formula;
import smile.gap.*;
import smile.math.MathEx;
import smile.regression.DataFrameRegression;
import smile.regression.Regression;
import smile.validation.metric.*;

/**
 * Genetic algorithm based feature selection. This method finds many (random)
 * subsets of variables of expected classification power using a Genetic
 * Algorithm. The "fitness" of each subset of variables is determined by its
 * ability to classify the samples according to a given classification
 * method. When many such subsets of variables are obtained, the one with the best
 * performance may be used as selected features. Alternatively, the frequencies
 * with which variables are selected may be analyzed further. The most
 * frequently selected variables may be presumed to be the most relevant to
 * sample distinction and are finally used for prediction. Although GA avoids
 * brute-force search, it is still much slower than univariate feature selection.
 * 
 * 

References

*
    *
  1. Leping Li and Clarice R. Weinberg. Gene Selection and Sample Classification Using a Genetic Algorithm/k-Nearest Neighbor Method.
  2. *
* * @author Haifeng Li */ public class GAFE { /** * Selection strategy. */ private final Selection selection; /** * The number of best chromosomes to copy to new population. When creating * new population by crossover and mutation, we have a big chance, that we * will lose the best chromosome. Elitism first copies the best chromosome * (or a few best chromosomes) to new population. The rest is done in * classical way. Elitism can very rapidly increase performance of GA, * because it prevents losing the best found solution. */ private final int elitism; /** * Crossover strategy. */ private final Crossover crossover; /** * Crossover rate. */ private final double crossoverRate; /** * Mutation rate. * The mutation parameters are set higher than usual to prevent premature convergence. */ private final double mutationRate; /** * Constructor. */ public GAFE() { this(Selection.Tournament(3, 0.95), 1, Crossover.TWO_POINT, 1.0, 0.01); } /** * Constructor. * @param selection the selection strategy. * @param elitism the number of best chromosomes to copy to new population. * @param crossover the strategy of crossover operation. * @param crossoverRate the crossover rate. * @param mutationRate the mutation rate. */ public GAFE(Selection selection, int elitism, Crossover crossover, double crossoverRate, double mutationRate) { this.selection = selection; this.elitism = elitism; this.crossover = crossover; this.crossoverRate = crossoverRate; this.mutationRate = mutationRate; } /** * Genetic algorithm based feature selection for classification. * @param size the population size of Genetic Algorithm. * @param generation the maximum number of iterations. * @param length the length of bit string, i.e. the number of features. * @param fitness the fitness function. * @return bit strings of last generation. */ public BitString[] apply(int size, int generation, int length, Fitness fitness) { if (size <= 0) { throw new IllegalArgumentException("Invalid population size: " + size); } BitString[] seeds = new BitString[size]; for (int i = 0; i < size; i++) { seeds[i] = new BitString(length, fitness, crossover, crossoverRate, mutationRate); } GeneticAlgorithm ga = new GeneticAlgorithm<>(seeds, selection, elitism); ga.evolve(generation); return seeds; } /** * Returns the index of 1's. * @return the index of 1's. */ private static int[] indexOf(byte[] bits) { int p = MathEx.sum(bits); if (p == 0) return null; int[] index = new int[p]; for (int i = 0, ii = 0; i < bits.length; i++) { if (bits[i] == 1) index[ii++] = i; } return index; } /** * Returns the data with selected features. * @return the data with selected features. */ private static double[][] select(double[][] x, int[] features) { int p = features.length; int n = x.length; double[][] xx = new double[n][p]; for (int i = 0; i < n; i++) { for (int j = 0; j < p; j++) { xx[i][j] = x[i][features[j]]; } } return xx; } /** * Returns the fitness of the classification model. * * @param x training samples. * @param y training labels. * @param testx testing samples. * @param testy testing labels. * @param metric classification metric. * @param trainer the lambda to train a model. * @return the fitness of model. */ public static Fitness fitness(double[][] x, int[] y, double[][] testx, int[] testy, ClassificationMetric metric, BiFunction> trainer) { return chromosome -> { byte[] bits = chromosome.bits(); int[] features = indexOf(bits); if (features == null) return 0.0; double[][] xx = select(x, features); double[][] testxx = select(testx, features); Classifier model = trainer.apply(xx, y); return metric.score(testy, model.predict(testxx)); }; } /** * Returns the fitness of the regression model. * * @param x training samples. * @param y training response. * @param testx testing samples. * @param testy testing response. * @param metric classification metric. * @param trainer the lambda to train a model. * @return the fitness of model. */ public static Fitness fitness(double[][] x, double[] y, double[][] testx, double[] testy, RegressionMetric metric, BiFunction> trainer) { return chromosome -> { byte[] bits = chromosome.bits(); int[] features = indexOf(bits); if (features == null) return Double.NEGATIVE_INFINITY; double[][] xx = select(x, features); double[][] testxx = select(testx, features); Regression model = trainer.apply(xx, y); return -metric.score(testy, model.predict(testxx)); }; } /** Returns the selected features. */ private static String[] selectedFeatures(byte[] bits, String[] names, String y) { int p = MathEx.sum(bits); if (p == 0) return null; int offset = 0; String[] features = new String[p]; for (int i = 0, ii = 0; i < bits.length; i++) { if (names[i].equals(y)) { offset++; } if (bits[i] == 1) { features[ii++] = names[i+offset]; } } return features; } /** * Returns the fitness of the classification model. * * @param y the column name of class labels. * @param train training data. * @param test testing data. * @param metric classification metric. * @param trainer the lambda to train a model. * @return the fitness of model. */ public static Fitness fitness(String y, DataFrame train, DataFrame test, ClassificationMetric metric, BiFunction trainer) { String[] names = train.names(); int[] testy = test.column(y).toIntArray(); return chromosome -> { byte[] bits = chromosome.bits(); String[] features = selectedFeatures(bits, names, y); if (features == null) return 0.0; Formula formula = Formula.of(y, features); DataFrameClassifier model = trainer.apply(formula, train); return metric.score(testy, model.predict(test)); }; } /** * Returns the fitness of the regression model. * * @param y the column name of response variable. * @param train training data. * @param test testing data. * @param metric classification metric. * @param trainer the lambda to train a model. * @return the fitness of model. */ public static Fitness fitness(String y, DataFrame train, DataFrame test, RegressionMetric metric, BiFunction trainer) { String[] names = train.names(); double[] testy = test.column(y).toDoubleArray(); return chromosome -> { byte[] bits = chromosome.bits(); String[] features = selectedFeatures(bits, names, y); if (features == null) return Double.NEGATIVE_INFINITY; Formula formula = Formula.of(y, features); DataFrameRegression model = trainer.apply(formula, train); return -metric.score(testy, model.predict(test)); }; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy