smile.feature.selection.SignalNoiseRatio Maven / Gradle / Ivy
The newest version!
/*
* Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Smile. If not, see .
*/
package smile.feature.selection;
import java.util.Arrays;
import java.util.stream.IntStream;
import smile.classification.ClassLabels;
import smile.data.DataFrame;
import smile.data.type.StructField;
import smile.data.type.StructType;
import smile.data.vector.BaseVector;
import smile.math.MathEx;
/**
* The signal-to-noise (S2N) metric ratio is a univariate feature ranking metric,
* which can be used as a feature selection criterion for binary classification
* problems. S2N is defined as |μ1 - μ2| / (σ1 + σ2),
* where μ1 and μ2 are the mean value of the variable
* in classes 1 and 2, respectively, and σ1 and σ2
* are the standard deviations of the variable in classes 1 and 2, respectively.
* Clearly, features with larger S2N ratios are better for classification.
*
* References
*
* - M. Shipp, et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nature Medicine, 2002.
*
*
* @param feature The feature name.
* @param ratio Signal noise ratio.
* @author Haifeng Li
*/
public record SignalNoiseRatio(String feature, double ratio) implements Comparable {
@Override
public int compareTo(SignalNoiseRatio other) {
return Double.compare(ratio, other.ratio);
}
@Override
public String toString() {
return String.format("SignalNoiseRatio(%s, %.4f)", feature, ratio);
}
/**
* Calculates the signal noise ratio of numeric variables.
*
* @param data the data frame of the explanatory and response variables.
* @param clazz the column name of binary class labels.
* @return the signal noise ratio.
*/
public static SignalNoiseRatio[] fit(DataFrame data, String clazz) {
BaseVector, ?, ?> y = data.column(clazz);
ClassLabels codec = ClassLabels.fit(y);
if (codec.k != 2) {
throw new UnsupportedOperationException("Signal Noise Ratio is applicable only to binary classification");
}
int n = data.nrow();
int n1 = 0;
for (int yi : codec.y) {
if (yi == 0) {
n1++;
}
}
int n2 = n - n1;
double[] x1 = new double[n1];
double[] x2 = new double[n2];
StructType schema = data.schema();
return IntStream.range(0, schema.length()).mapToObj(i -> {
StructField field = schema.field(i);
if (field.isNumeric()) {
Arrays.fill(x1, 0.0);
Arrays.fill(x2, 0.0);
BaseVector, ?, ?> xi = data.column(i);
for (int l = 0, j = 0, k = 0; l < n; l++) {
if (codec.y[l] == 0) {
x1[j++] = xi.getDouble(l);
} else {
x2[k++] = xi.getDouble(l);
}
}
double mu1 = MathEx.mean(x1);
double mu2 = MathEx.mean(x2);
double sd1 = MathEx.sd(x1);
double sd2 = MathEx.sd(x2);
double s2n = Math.abs(mu1 - mu2) / (sd1 + sd2);
return new SignalNoiseRatio(field.name, s2n);
} else {
return null;
}
}).filter(s2n -> s2n != null && !s2n.feature.equals(clazz)).toArray(SignalNoiseRatio[]::new);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy