smile.glm.model.Binomial Maven / Gradle / Ivy
The newest version!
/*
* Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Smile. If not, see .
*/
package smile.glm.model;
import smile.math.MathEx;
import java.util.stream.IntStream;
/**
* The response variable is of Binomial distribution.
*
* @author Haifeng Li
*/
public interface Binomial {
/**
* logit link function. Suppose n * y has a bin(n, p) distribution.
* That is, y is the sample proportion (rather than number) of successes.
* So E(y) is independent of n.
*
* @param n each sample y[i] is of bin(n[i], p_i) distribution.
* @return logit link function.
*/
static Model logit(int[] n) {
return new Model() {
@Override
public String toString() {
return "Binomial(logit)";
}
@Override
public double link(double mu) {
return Math.log(mu / (1.0 - mu));
}
@Override
public double invlink(double eta) {
return 1.0 / (1.0 + Math.exp(-eta));
}
@Override
public double dlink(double mu) {
return 1.0 / (mu * (1.0 - mu));
}
@Override
public double variance(double mu) {
return mu * (1.0 - mu);
}
@Override
public double mustart(double y) {
if (y < 0.0 || y > 1.0) {
throw new IllegalArgumentException("Invalid argument (expected 0 <= y <= 1): " + y);
}
if (y == 0) return 0.1;
if (y == 1.0) return 0.9;
else return y;
}
@Override
public double deviance(double[] y, double[] mu, double[] residuals) {
return IntStream.range(0, y.length).mapToDouble(i -> {
double d = 2.0 * n[i] * (y[i] * Math.log(y[i] / mu[i]) + (1.0 - y[i]) * Math.log((1.0 - y[i]) / (1.0 - mu[i])));
residuals[i] = Math.sqrt(d) * Math.signum(y[i] - mu[i]);
return d;
}).sum();
}
@Override
public double nullDeviance(double[] y, double mu) {
double logmu = -Math.log(mu);
double logmu1 = -Math.log(1.0 - mu);
return 2.0 * IntStream.range(0, y.length).mapToDouble(i -> n[i] * (y[i] == 0.0 ? logmu1 : logmu)).sum();
}
@Override
public double logLikelihood(double[] y, double[] mu) {
return IntStream.range(0, y.length).mapToDouble(i ->
(y[i] * mu[i] - Math.log(1 + Math.exp(mu[i]))) / n[i] + MathEx.lchoose(n[i], (int) (n[i] * y[i]))
).sum();
}
};
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy