All Downloads are FREE. Search and download functionalities are using the official Maven repository.

smile.manifold.KPCA Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
 *
 * Smile is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Smile is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Smile.  If not, see .
 */

package smile.manifold;

import java.io.Serial;
import java.io.Serializable;
import java.util.Arrays;
import java.util.function.Function;
import smile.math.MathEx;
import smile.math.blas.UPLO;
import smile.math.kernel.MercerKernel;
import smile.math.matrix.ARPACK;
import smile.math.matrix.Matrix;

/**
 * Kernel principal component analysis. Kernel PCA is an extension of
 * principal component analysis (PCA) using techniques of kernel methods.
 * Using a kernel, the originally linear operations of PCA are done in a
 * reproducing kernel Hilbert space with a non-linear mapping.
 * 

* In practice, a large data set leads to a large Kernel/Gram matrix K, and * storing K may become a problem. One way to deal with this is to perform * clustering on your large dataset, and populate the kernel with the means * of those clusters. Since even this method may yield a relatively large K, * it is common to compute only the top P eigenvalues and eigenvectors of K. *

* Kernel PCA with an isotropic kernel function is closely related to metric MDS. * Carrying out metric MDS on the kernel matrix K produces an equivalent configuration * of points as the distance (2(1 - K(xi, xj)))1/2 * computed in feature space. *

* Kernel PCA also has close connections with Isomap, LLE, and Laplacian eigenmaps. * *

References

*
    *
  1. Bernhard Scholkopf, Alexander Smola, and Klaus-Robert Muller. Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Computation, 1998.
  2. *
* * @see smile.math.kernel.MercerKernel * @see smile.feature.extraction.PCA * @see smile.manifold.IsoMap * @see smile.manifold.LLE * @see smile.manifold.LaplacianEigenmap * @see smile.manifold.SammonMapping * * @param the data type of model input objects. * * @author Haifeng Li */ public class KPCA implements Function, Serializable { @Serial private static final long serialVersionUID = 2L; /** * Training data. */ private final T[] data; /** * Mercer kernel. */ private final MercerKernel kernel; /** * The row mean of kernel matrix. */ private final double[] mean; /** * The mean of kernel matrix. */ private final double mu; /** * The eigenvalues of kernel principal components. */ private final double[] latent; /** * The projection matrix. */ private final Matrix projection; /** * The coordinates of projected training data. */ private final double[][] coordinates; /** * Constructor. * @param data training data. * @param kernel Mercer kernel. * @param mean the row/column average of kernel matrix. * @param mu the average of kernel matrix. * @param coordinates the coordinates of projected training data. * @param latent the projection matrix. * @param projection the projection matrix. */ public KPCA(T[] data, MercerKernel kernel, double[] mean, double mu, double[][] coordinates, double[] latent, Matrix projection) { this.data = data; this.kernel = kernel; this.mean = mean; this.mu = mu; this.coordinates = coordinates; this.latent = latent; this.projection = projection; } /** * Fits kernel principal component analysis. * @param data training data. * @param kernel Mercer kernel. * @param k choose up to k principal components (larger than 0.0001) used for projection. * @param the data type of samples. * @return the model. */ public static KPCA fit(T[] data, MercerKernel kernel, int k) { return fit(data, kernel, k, 0.0001); } /** * Fits kernel principal component analysis. * @param data training data. * @param kernel Mercer kernel. * @param k choose top k principal components used for projection. * @param threshold only principal components with eigenvalues * larger than the given threshold will be kept. * @param the data type of samples. * @return the model. */ public static KPCA fit(T[] data, MercerKernel kernel, int k, double threshold) { if (threshold < 0) { throw new IllegalArgumentException("Invalid threshold = " + threshold); } if (k < 1 || k > data.length) { throw new IllegalArgumentException("Invalid dimension of feature space: " + k); } int n = data.length; Matrix K = new Matrix(n, n); for (int i = 0; i < n; i++) { for (int j = 0; j <= i; j++) { double x = kernel.k(data[i], data[j]); K.set(i, j, x); K.set(j, i, x); } } double[] mean = K.rowMeans(); double mu = MathEx.mean(mean); for (int i = 0; i < n; i++) { for (int j = 0; j <= i; j++) { double x = K.get(i, j) - mean[i] - mean[j] + mu; K.set(i, j, x); K.set(j, i, x); } } K.uplo(UPLO.LOWER); Matrix.EVD eigen = ARPACK.syev(K, ARPACK.SymmOption.LA, k); double[] eigvalues = eigen.wr; Matrix eigvectors = eigen.Vr; int p = (int) Arrays.stream(eigvalues).limit(k).filter(e -> e/n > threshold).count(); double[] latent = new double[p]; Matrix projection = new Matrix(p, n); for (int j = 0; j < p; j++) { latent[j] = eigvalues[j]; double s = Math.sqrt(latent[j]); for (int i = 0; i < n; i++) { projection.set(j, i, eigvectors.get(i, j) / s); } } Matrix coord = projection.mm(K); double[][] coordinates = new double[n][p]; for (int i = 0; i < n; i++) { for (int j = 0; j < p; j++) { coordinates[i][j] = coord.get(j, i); } } return new KPCA<>(data, kernel, mean, mu, coordinates, latent, projection); } /** * Returns the eigenvalues of kernel principal components, ordered from largest to smallest. * @return the eigenvalues of kernel principal components, ordered from largest to smallest. */ public double[] variances() { return latent; } /** * Returns the projection matrix. The dimension reduced data can be obtained * by y = W * K(x, ·). * @return the projection matrix. */ public Matrix projection() { return projection; } /** * Returns the nonlinear principal component scores, i.e., the representation * of learning data in the nonlinear principal component space. Rows * correspond to observations, columns to components. * @return the nonlinear principal component scores. */ public double[][] coordinates() { return coordinates; } @Override public double[] apply(T x) { int n = data.length; double[] y = new double[n]; for (int i = 0; i < n; i++) { y[i] = kernel.k(x, data[i]); } double my = MathEx.mean(y); for (int i = 0; i < n; i++) { y[i] = y[i] - my - mean[i] + mu; } return projection.mv(y); } /** * Project a set of data to the feature space. * @param x the data set. * @return the projection in the feature space. */ public double[][] apply(T[] x) { int m = x.length; double[][] y = new double[m][]; for (int i = 0; i < m; i++) { y[i] = apply(x[i]); } return y; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy