smile.manifold.LLE Maven / Gradle / Ivy
The newest version!
/*
* Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Smile. If not, see .
*/
package smile.manifold;
import java.io.Serial;
import java.io.Serializable;
import java.util.Arrays;
import smile.graph.AdjacencyList;
import smile.math.MathEx;
import smile.math.blas.Transpose;
import smile.math.matrix.ARPACK;
import smile.math.matrix.IMatrix;
import smile.math.matrix.Matrix;
import smile.math.matrix.SparseMatrix;
/**
* Locally Linear Embedding. It has several advantages over Isomap, including
* faster optimization when implemented to take advantage of sparse matrix
* algorithms, and better results with many problems. LLE also begins by
* finding a set of the nearest neighbors of each point. It then computes
* a set of weights for each point that best describe the point as a linear
* combination of its neighbors. Finally, it uses an eigenvector-based
* optimization technique to find the low-dimensional embedding of points,
* such that each point is still described with the same linear combination
* of its neighbors. LLE tends to handle non-uniform sample densities poorly
* because there is no fixed unit to prevent the weights from drifting as
* various regions differ in sample densities.
*
* @see IsoMap
* @see LaplacianEigenmap
* @see UMAP
*
* References
*
* - Sam T. Roweis and Lawrence K. Saul. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 290(5500):2323-2326, 2000.
*
*
* @author Haifeng Li
*/
public class LLE implements Serializable {
@Serial
private static final long serialVersionUID = 2L;
private static final org.slf4j.Logger logger = org.slf4j.LoggerFactory.getLogger(LLE.class);
/**
* The original sample index.
*/
public final int[] index;
/**
* The coordinate matrix in embedding space.
*/
public final double[][] coordinates;
/**
* Nearest neighbor graph.
*/
public final AdjacencyList graph;
/**
* Constructor.
* @param index the original sample index.
* @param coordinates the coordinates.
* @param graph the nearest neighbor graph.
*/
public LLE(int[] index, double[][] coordinates, AdjacencyList graph) {
this.index = index;
this.coordinates = coordinates;
this.graph = graph;
}
/**
* Runs the LLE algorithm.
* @param data the input data.
* @param k k-nearest neighbor.
* @return the model.
*/
public static LLE of(double[][] data, int k) {
return of(data, k, 2);
}
/**
* Runs the LLE algorithm.
* @param data the input data.
* @param d the dimension of the manifold.
* @param k k-nearest neighbor.
* @return the model.
*/
public static LLE of(double[][] data, int k, int d) {
int D = data[0].length;
double tol = 0.0;
if (k > D) {
logger.info("LLE: regularization will be used since K > D.");
tol = 1E-3;
}
// Use the largest connected component of nearest neighbor graph.
int[][] N = new int[data.length][k];
AdjacencyList graph = NearestNeighborGraph.of(data, k, false, (v1, v2, weight, j) -> N[v1][j] = v2);
NearestNeighborGraph nng = NearestNeighborGraph.largest(graph);
int[] index = nng.index;
int n = data.length;
graph = nng.graph;
// The reverse index maps the original data to the largest connected component
// in case that the graph is disconnected.
int[] reverseIndex = new int[n];
if (index.length == n) {
for (int i = 0; i < n; i++) {
reverseIndex[i] = i;
}
} else {
n = index.length;
for (int i = 0; i < index.length; i++) {
reverseIndex[index[i]] = i;
}
}
int len = n * k;
double[] w = new double[len];
int[] rowIndex = new int[len];
int[] colIndex = new int[n + 1];
for (int i = 1; i <= n; i++) {
colIndex[i] = colIndex[i - 1] + k;
}
Matrix C = new Matrix(k, k);
double[] b = new double[k];
int m = 0;
for (int i : index) {
double trace = 0.0;
double[] xi = data[i];
for (int p = 0; p < k; p++) {
double[] xip = data[N[i][p]];
for (int q = 0; q < k; q++) {
double[] xiq = data[N[i][q]];
C.set(p, q, 0.0);
for (int l = 0; l < D; l++) {
C.add(p, q, (xi[l] - xip[l]) * (xi[l] - xiq[l]));
}
}
trace += C.get(p, p);
}
if (tol != 0.0) {
trace *= tol;
for (int p = 0; p < k; p++) {
C.add(p, p, trace);
}
}
Arrays.fill(b, 1.0);
Matrix.LU lu = C.lu(true);
b = lu.solve(b);
double sum = MathEx.sum(b);
int[] ni = N[i];
for (int p = 0; p < k; p++) {
w[m * k + p] = b[p] / sum;
rowIndex[m * k + p] = reverseIndex[ni[p]];
}
m++;
}
// This is the transpose of W in the paper.
SparseMatrix Wt = new SparseMatrix(n, n, w, rowIndex, colIndex);
// ARPACK may not find all needed eigenvalues for k = d + 1.
// Hack it with 10 * (d + 1).
Matrix.EVD eigen = ARPACK.syev(new M(Wt), ARPACK.SymmOption.SM, Math.min(10*(d+1), n-1));
Matrix V = eigen.Vr;
// Sometimes, ARPACK doesn't compute the smallest eigenvalue (i.e. 0).
// Maybe due to numeric stability.
int offset = eigen.wr[eigen.wr.length - 1] < 1E-12 ? 2 : 1;
double[][] coordinates = new double[n][d];
for (int j = d; --j >= 0; ) {
int c = V.ncol() - j - offset;
for (int i = 0; i < n; i++) {
coordinates[i][j] = V.get(i, c);
}
}
return new LLE(index, coordinates, graph);
}
/**
* M = (I - W)' * (I - W).
* we have M * v = v - W * v - W' * v + W' * W * v. As W is sparse and we can
* compute only W * v and W' * v efficiently.
*/
private static class M extends IMatrix {
final SparseMatrix Wt;
final double[] x;
final double[] Wx;
final double[] Wtx;
final double[] WtWx;
public M(SparseMatrix Wt) {
this.Wt = Wt;
x = new double[Wt.nrow()];
Wx = new double[Wt.nrow()];
Wtx = new double[Wt.ncol()];
WtWx = new double[Wt.nrow()];
}
@Override
public int nrow() {
return Wt.nrow();
}
@Override
public int ncol() {
return nrow();
}
@Override
public long size() {
return Wt.size();
}
@Override
public void mv(double[] work, int inputOffset, int outputOffset) {
System.arraycopy(work, inputOffset, x, 0, x.length);
Wt.tv(x, Wx);
Wt.mv(x, Wtx);
Wt.mv(Wx, WtWx);
int n = x.length;
for (int i = 0; i < n; i++) {
work[outputOffset + i] = WtWx[i] + x[i] - Wx[i] - Wtx[i];
}
}
@Override
public void tv(double[] work, int inputOffset, int outputOffset) {
throw new UnsupportedOperationException();
}
@Override
public void mv(Transpose trans, double alpha, double[] x, double beta, double[] y) {
throw new UnsupportedOperationException();
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy