All Downloads are FREE. Search and download functionalities are using the official Maven repository.

smile.manifold.LaplacianEigenmap Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
 *
 * Smile is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Smile is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Smile.  If not, see .
 */

package smile.manifold;

import java.io.Serial;
import java.io.Serializable;
import java.util.Collection;
import smile.data.SparseDataset;
import smile.graph.AdjacencyList;
import smile.graph.Graph.Edge;
import smile.math.distance.Distance;
import smile.math.distance.EuclideanDistance;
import smile.math.matrix.ARPACK;
import smile.math.matrix.Matrix;
import smile.math.matrix.SparseMatrix;
import smile.util.SparseArray;

/**
 * Laplacian Eigenmap. Using the notion of the Laplacian of the nearest
 * neighbor adjacency graph, Laplacian Eigenmap computes a low dimensional
 * representation of the dataset that optimally preserves local neighborhood
 * information in a certain sense. The representation map generated by the
 * algorithm may be viewed as a discrete approximation to a continuous map
 * that naturally arises from the geometry of the manifold.
 * 

* The locality preserving character of the Laplacian Eigenmap algorithm makes * it relatively insensitive to outliers and noise. It is also not prone to * "short-circuiting" as only the local distances are used. * * @see IsoMap * @see LLE * @see UMAP * *

References

*
    *
  1. Mikhail Belkin and Partha Niyogi. Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering. NIPS, 2001.
  2. *
* * @author Haifeng Li */ public class LaplacianEigenmap implements Serializable { @Serial private static final long serialVersionUID = 2L; /** * The width of heat kernel. */ public final double width; /** * The original sample index. */ public final int[] index; /** * The coordinate matrix in embedding space. */ public final double[][] coordinates; /** * Nearest neighbor graph. */ public final AdjacencyList graph; /** * Constructor with discrete weights. * @param index the original sample index. * @param coordinates the coordinates. * @param graph the nearest neighbor graph. */ public LaplacianEigenmap(int[] index, double[][] coordinates, AdjacencyList graph) { this(-1, index, coordinates, graph); } /** * Constructor with Gaussian kernel. * @param width the width of heat kernel. * @param index the original sample index. * @param coordinates the coordinates. * @param graph the nearest neighbor graph. */ public LaplacianEigenmap(double width, int[] index, double[][] coordinates, AdjacencyList graph) { this.width = width; this.index = index; this.coordinates = coordinates; this.graph = graph; } /** * Laplacian Eigenmaps with discrete weights. * @param data the input data. * @param k k-nearest neighbor. * @return the model. */ public static LaplacianEigenmap of(double[][] data, int k) { return of(data, k, 2, -1); } /** * Laplacian Eigenmap with Gaussian kernel. * @param data the input data. * @param d the dimension of the manifold. * @param k k-nearest neighbor. * @param t the smooth/width parameter of heat kernel exp(-||x-y||2 / t). * Non-positive value means discrete weights. * @return the model. */ public static LaplacianEigenmap of(double[][] data, int k, int d, double t) { return of(data, new EuclideanDistance(), k, d, t); } /** * Laplacian Eigenmaps with discrete weights. * @param data the input data. * @param distance the distance function. * @param k k-nearest neighbor. * @param the data type of points. * @return the model. */ public static LaplacianEigenmap of(T[] data, Distance distance, int k) { return of(data, distance, k, 2, -1); } /** * Laplacian Eigenmap with Gaussian kernel. * @param data the input data. * @param distance the distance function. * @param k k-nearest neighbor. * @param d the dimension of the manifold. * @param t the smooth/width parameter of heat kernel exp(-||x-y||2 / t). * Non-positive value means discrete weights. * @param the data type of points. * @return the model. */ public static LaplacianEigenmap of(T[] data, Distance distance, int k, int d, double t) { // Use the largest connected component of nearest neighbor graph. AdjacencyList graph = NearestNeighborGraph.of(data, distance, k, false, null); NearestNeighborGraph nng = NearestNeighborGraph.largest(graph); int[] index = nng.index; int n = index.length; graph = nng.graph; double[] D = new double[n]; double gamma = -1.0 / t; SparseArray[] W = new SparseArray[n]; for (int i = 0; i < n; i++) { SparseArray row = new SparseArray(); Collection edges = graph.getEdges(i); for (Edge edge : edges) { int j = edge.v2; if (i == j) j = edge.v1; double w = t <= 0 ? 1.0 : Math.exp(gamma * edge.weight * edge.weight); row.set(j, w); D[i] += w; } D[i] = 1 / Math.sqrt(D[i]); W[i] = row; } for (int i = 0; i < n; i++) { SparseArray row = W[i]; for (SparseArray.Entry e : row) { e.update(-D[i] * e.x * D[e.i]); } row.set(i, 1.0); } // Here L is actually I - D^(-1/2) * W * D^(-1/2) SparseMatrix L = SparseDataset.of(W, n).toMatrix(); // ARPACK may not find all needed eigenvalues for k = d + 1. // Hack it with 10 * (d + 1). Matrix.EVD eigen = ARPACK.syev(L, ARPACK.SymmOption.SM, Math.min(10*(d+1), n-1)); Matrix V = eigen.Vr; double[][] coordinates = new double[n][d]; for (int j = d; --j >= 0; ) { double norm = 0.0; int c = V.ncol() - j - 2; for (int i = 0; i < n; i++) { double xi = V.get(i, c) * D[i]; coordinates[i][j] = xi; norm += xi * xi; } norm = Math.sqrt(norm); for (int i = 0; i < n; i++) { coordinates[i][j] /= norm; } } return new LaplacianEigenmap(t, index, coordinates, graph); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy