smile.manifold.MDS Maven / Gradle / Ivy
The newest version!
/*
* Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Smile. If not, see .
*/
package smile.manifold;
import java.util.Properties;
import smile.math.MathEx;
import smile.math.blas.UPLO;
import smile.math.matrix.ARPACK;
import smile.math.matrix.Matrix;
/**
* Classical multidimensional scaling, also known as principal coordinates
* analysis. Given a matrix of dissimilarities (e.g. pairwise distances), MDS
* finds a set of points in low dimensional space that well-approximates the
* dissimilarities. We are not restricted to using Euclidean
* distance metric. However, when Euclidean distances are used MDS is
* equivalent to PCA.
*
* @see smile.feature.extraction.PCA
* @see SammonMapping
*
* @author Haifeng Li
*/
public class MDS {
private static final org.slf4j.Logger logger = org.slf4j.LoggerFactory.getLogger(MDS.class);
/**
* The component scores.
*/
public final double[] scores;
/**
* The principal coordinates.
*/
public final double[][] coordinates;
/**
* The proportion of variance contained in each principal component.
*/
public final double[] proportion;
/**
* Constructor.
*
* @param scores the component scores.
* @param proportion the proportion of variance contained in each principal component.
* @param coordinates the principal coordinates
*/
public MDS(double[] scores, double[] proportion, double[][] coordinates) {
this.scores = scores;
this.proportion = proportion;
this.coordinates = coordinates;
}
/**
* Fits the classical multidimensional scaling.
* Map original data into 2-dimensional Euclidean space.
* @param proximity the non-negative proximity matrix of dissimilarities. The
* diagonal should be zero and all other elements should be positive and
* symmetric. For pairwise distances matrix, it should be just the plain
* distance, not squared.
* @return the model.
*/
public static MDS of(double[][] proximity) {
return of(proximity, new Properties());
}
/**
* Fits the classical multidimensional scaling.
* @param proximity the non-negative proximity matrix of dissimilarities. The
* diagonal should be zero and all other elements should be positive and
* symmetric. For pairwise distances matrix, it should be just the plain
* distance, not squared.
* @param k the dimension of the projection.
* @return the model.
*/
public static MDS of(double[][] proximity, int k) {
return of(proximity, k, false);
}
/**
* Fits the classical multidimensional scaling.
*
* @param proximity the non-negative proximity matrix of dissimilarities. The
* diagonal should be zero and all other elements should be positive and
* symmetric. For pairwise distances matrix, it should be just the plain
* distance, not squared.
* @param params the hyperparameters.
* @return the model.
*/
public static MDS of(double[][] proximity, Properties params) {
int k = Integer.parseInt(params.getProperty("smile.mds.k", "2"));
boolean positive = Boolean.parseBoolean(params.getProperty("smile.mds.positive", "false"));
return of(proximity, k, positive);
}
/**
* Fits the classical multidimensional scaling.
* @param proximity the non-negative proximity matrix of dissimilarities. The
* diagonal should be zero and all other elements should be positive and
* symmetric. For pairwise distances matrix, it should be just the plain
* distance, not squared.
* @param k the dimension of the projection.
* @param positive if true, estimate an appropriate constant to be added
* to all the dissimilarities, apart from the self-dissimilarities, that
* makes the learning matrix positive semi-definite. The other formulation of
* the additive constant problem is as follows. If the proximity is
* measured in an interval scale, where there is no natural origin, then there
* is not a sympathy of the dissimilarities to the distances in the Euclidean
* space used to represent the objects. In this case, we can estimate a constant c
* such that proximity + c may be taken as ratio data, and also possibly
* to minimize the dimensionality of the Euclidean space required for
* representing the objects.
* @return the model.
*/
public static MDS of(double[][] proximity, int k, boolean positive) {
int m = proximity.length;
int n = proximity[0].length;
if (m != n) {
throw new IllegalArgumentException("The proximity matrix is not square.");
}
if (k < 1 || k >= n) {
throw new IllegalArgumentException("Invalid k = " + k);
}
Matrix B = getGram(proximity);
if (positive) {
Matrix Z = new Matrix(2 * n, 2 * n);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
Z.set(i, n + j, 2 * B.get(i, j));
}
}
for (int i = 0; i < n; i++) {
Z.set(n + i, i, -1);
}
double[] mean = MathEx.rowMeans(proximity);
double mu = MathEx.mean(mean);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
Z.set(n + i, n + j, 2 * (proximity[i][j] - mean[i] - mean[j] + mu));
}
}
double[] eigvalues = Z.eigen(false, false, true).wr;
double c = MathEx.max(eigvalues);
for (int i = 0; i < n; i++) {
B.set(i, i, 0.0);
for (int j = 0; j < i; j++) {
double x = -0.5 * MathEx.pow2(proximity[i][j] + c);
B.set(i, j, x);
B.set(j, i, x);
}
}
}
B.uplo(UPLO.LOWER);
Matrix.EVD eigen = ARPACK.syev(B, ARPACK.SymmOption.LA, k);
if (eigen.wr.length < k) {
logger.warn("eigen({}) returns only {} eigen vectors", k, eigen.wr.length);
k = eigen.wr.length;
}
double[][] coordinates = new double[n][k];
for (int j = 0; j < k; j++) {
if (eigen.wr[j] < 0) {
throw new IllegalArgumentException(String.format("Some of the first %d eigenvalues are < 0.", k));
}
double scale = Math.sqrt(eigen.wr[j]);
for (int i = 0; i < n; i++) {
coordinates[i][j] = eigen.Vr.get(i, j) * scale;
}
}
double[] eigenvalues = eigen.wr;
double[] proportion = eigenvalues.clone();
MathEx.unitize1(proportion);
return new MDS(eigenvalues, proportion, coordinates);
}
/**
* Returns the Gram matrix X' * X.
* @param proximity the non-negative proximity matrix of dissimilarities.
* @return the Gram matrix.
*/
private static Matrix getGram(double[][] proximity) {
int n = proximity[0].length;
Matrix A = new Matrix(n, n);
Matrix B = new Matrix(n, n);
for (int i = 0; i < n; i++) {
for (int j = 0; j < i; j++) {
double x = -0.5 * MathEx.pow2(proximity[i][j]);
A.set(i, j, x);
A.set(j, i, x);
}
}
double[] mean = A.rowMeans();
double mu = MathEx.mean(mean);
for (int i = 0; i < n; i++) {
for (int j = 0; j <= i; j++) {
double x = A.get(i, j) - mean[i] - mean[j] + mu;
B.set(i, j, x);
B.set(j, i, x);
}
}
return B;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy