smile.manifold.TSNE Maven / Gradle / Ivy
The newest version!
/*
* Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Smile. If not, see .
*/
package smile.manifold;
import java.io.Serial;
import java.io.Serializable;
import java.util.Arrays;
import java.util.stream.IntStream;
import smile.math.MathEx;
import smile.stat.distribution.GaussianDistribution;
/**
* The t-distributed stochastic neighbor embedding. The t-SNE is a nonlinear
* dimensionality reduction technique that is particularly well suited
* for embedding high-dimensional data into a space of two or three
* dimensions, which can then be visualized in a scatter plot. Specifically,
* it models each high-dimensional object by a two- or three-dimensional
* point in such a way that similar objects are modeled by nearby points
* and dissimilar objects are modeled by distant points.
*
* The t-SNE algorithm comprises two main stages. First, t-SNE constructs
* a probability distribution over pairs of high-dimensional objects in
* such a way that similar objects have a high probability of being picked,
* whilst dissimilar points have an infinitesimal probability of being picked.
* Second, t-SNE defines a similar probability distribution over the points
* in the low-dimensional map, and it minimizes the Kullback–Leibler
* divergence between the two distributions with respect to the locations
* of the points in the map. Note that while the original algorithm uses
* the Euclidean distance between objects as the base of its similarity
* metric, this should be changed as appropriate.
*
*
References
*
* - L.J.P. van der Maaten. Accelerating t-SNE using Tree-Based Algorithms.
* Journal of Machine Learning Research 15(Oct):3221-3245, 2014.
* - L.J.P. van der Maaten and G.E. Hinton. Visualizing Non-Metric
* Similarities in Multiple Maps. Machine Learning 87(1):33-55, 2012.
* - L.J.P. van der Maaten. Learning a Parametric Embedding by Preserving
* Local Structure. In Proceedings of the Twelfth International Conference
* on Artificial Intelligence & Statistics (AI-STATS),
* JMLR W&CP 5:384-391, 2009.
* - L.J.P. van der Maaten and G.E. Hinton. Visualizing High-Dimensional
* Data Using t-SNE. Journal of Machine Learning Research
* 9(Nov):2579-2605, 2008.
*
*
* @see UMAP
*
* @author Haifeng Li
*/
public class TSNE implements Serializable {
@Serial
private static final long serialVersionUID = 2L;
private static final org.slf4j.Logger logger = org.slf4j.LoggerFactory.getLogger(TSNE.class);
/**
* The coordinate matrix in embedding space.
*/
public final double[][] coordinates;
/**
* The learning rate.
*/
private final double eta;
/**
* The number of iterations so far.
*/
private int totalIter = 0;
/**
* The momentum factor.
*/
private double momentum = 0.5;
/**
* The momentum in later stage.
*/
private final double finalMomentum = 0.8;
/**
* The number of iterations at which switch the momentum to
* finalMomentum.
*/
private final int momentumSwitchIter = 250;
/**
* The floor of gain.
*/
private final double minGain = .01;
/** The gain matrix. */
private final double[][] gains; // adjust learning rate for each point
/** The probability matrix of the distances in the input space. */
private final double[][] P;
/** The probability matrix of the distances in the feature space. */
private final double[][] Q;
/** The sum of Q matrix. */
private double Qsum;
/** The cost function value. */
private double cost;
/** Constructor. Train t-SNE for 1000 iterations, perplexity = 20 and learning rate = 200.
*
* @param X the input data. If X is a square matrix, it is assumed to be
* the squared distance/dissimilarity matrix.
* @param d the dimension of embedding space.
*/
public TSNE(double[][] X, int d) {
this(X, d, 20, 200, 1000);
}
/** Constructor. Train t-SNE for given number of iterations.
*
* @param X the input data. If X is a square matrix, it is assumed to be
* the squared distance/dissimilarity matrix.
* @param d the dimension of embedding space.
* @param perplexity the perplexity of the conditional distribution.
* @param eta the learning rate.
* @param iterations the number of iterations.
*/
public TSNE(double[][] X, int d, double perplexity, double eta, int iterations) {
this.eta = eta;
int n = X.length;
double[][] D;
if (X.length == X[0].length) {
D = X;
} else {
D = new double[n][n];
MathEx.pdist(X, D, MathEx::squaredDistance);
}
coordinates = new double[n][d];
double[][] Y = coordinates;
gains = new double[n][d]; // adjust learning rate for each point
// Initialize Y randomly by N(0, 0.0001)
GaussianDistribution gaussian = new GaussianDistribution(0.0, 0.0001);
for (int i = 0; i < n; i++) {
Arrays.fill(gains[i], 1.0);
double[] Yi = Y[i];
for (int j = 0; j < d; j++) {
Yi[j] = gaussian.rand();
}
}
// Large tolerance to speed up the search of Gaussian kernel width
// A small difference of kernel width is not important.
P = expd(D, perplexity, 1E-3);
Q = new double[n][n];
// Make P symmetric
// sum(P) = 2 * n as each row of P is normalized
double Psum = 2 * n;
for (int i = 0; i < n; i++) {
double[] Pi = P[i];
for (int j = 0; j < i; j++) {
double p = 12.0 * (Pi[j] + P[j][i]) / Psum;
if (Double.isNaN(p) || p < 1E-16) p = 1E-16;
Pi[j] = p;
P[j][i] = p;
}
}
update(iterations);
}
/**
* Returns the cost function value.
* @return the cost function value.
*/
public double cost() {
return cost;
}
/**
* Performs additional iterations.
* @param iterations the number of iterations.
*/
public void update(int iterations) {
double[][] Y = coordinates;
int n = Y.length;
int d = Y[0].length;
double[][] dY = new double[n][d];
double[][] dC = new double[n][d];
for (int iter = 1; iter <= iterations; iter++, totalIter++) {
Qsum = computeQ(Y, Q);
IntStream.range(0, n).parallel().forEach(i -> sne(i, dY[i], dC[i]));
// gradient update with momentum and gains
IntStream.range(0, n).parallel().forEach(i -> {
double[] Yi = Y[i];
double[] dYi = dY[i];
double[] dCi = dC[i];
double[] g = gains[i];
for (int k = 0; k < d; k++) {
dYi[k] = momentum * dYi[k] - eta * g[k] * dCi[k];
Yi[k] += dYi[k];
}
});
if (totalIter == momentumSwitchIter) {
momentum = finalMomentum;
for (int i = 0; i < n; i++) {
double[] Pi = P[i];
for (int j = 0; j < n; j++) {
Pi[j] /= 12.0;
}
}
}
// Compute current value of cost function
if (iter % 100 == 0) {
cost = computeCost(P, Q);
logger.info("Error after {} iterations: {}", iter, cost);
}
}
// Make solution zero-mean
double[] colMeans = MathEx.colMeans(Y);
IntStream.range(0, n).parallel().forEach(i -> {
double[] Yi = Y[i];
for (int j = 0; j < d; j++) {
Yi[j] -= colMeans[j];
}
});
if (iterations % 100 != 0) {
cost = computeCost(P, Q);
logger.info("Error after {} iterations: {}", iterations, cost);
}
}
/** Computes the gradients and updates the coordinates. */
private void sne(int i, double[] dY, double[] dC) {
double[][] Y = coordinates;
int n = Y.length;
int d = Y[0].length;
// Compute gradient
// dereference before the loop for better performance
double[] Yi = Y[i];
double[] Pi = P[i];
double[] Qi = Q[i];
double[] g = gains[i];
Arrays.fill(dC, 0.0);
for (int j = 0; j < n; j++) {
if (i != j) {
double[] Yj = Y[j];
double q = Qi[j];
double z = (Pi[j] - (q / Qsum)) * q;
for (int k = 0; k < d; k++) {
dC[k] += 4.0 * (Yi[k] - Yj[k]) * z;
}
}
}
// Update gains
for (int k = 0; k < d; k++) {
g[k] = (Math.signum(dC[k]) != Math.signum(dY[k])) ? (g[k] + .2) : (g[k] * .8);
if (g[k] < minGain) g[k] = minGain;
}
}
/** Compute the Gaussian kernel (search the width for given perplexity). */
private double[][] expd(double[][] D, double perplexity, double tol) {
int n = D.length;
double[][] P = new double[n][n];
double[] DiSum = MathEx.rowSums(D);
IntStream.range(0, n).parallel().forEach(i -> {
double logU = MathEx.log2(perplexity);
double[] Pi = P[i];
double[] Di = D[i];
// Use sqrt(1 / avg of distance) to initialize beta
double beta = Math.sqrt((n-1) / DiSum[i]);
double betamin = 0.0;
double betamax = Double.POSITIVE_INFINITY;
logger.debug("initial beta[{}] = {}", i, beta);
// Evaluate whether the perplexity is within tolerance
double Hdiff = Double.MAX_VALUE;
for (int iter = 0; Math.abs(Hdiff) > tol && iter < 50; iter++) {
double Pisum = 0.0;
double H = 0.0;
for (int j = 0; j < n; j++) {
double d = beta * Di[j];
double p = Math.exp(-d);
Pi[j] = p;
Pisum += p;
H += p * d;
}
// P[i][i] should be 0
Pi[i] = 0.0;
Pisum -= 1.0;
H = MathEx.log2(Pisum) + H / Pisum;
Hdiff = H - logU;
if (Math.abs(Hdiff) > tol) {
if (Hdiff > 0) {
betamin = beta;
if (Double.isInfinite(betamax))
beta *= 2.0;
else
beta = (beta + betamax) / 2;
} else {
betamax = beta;
beta = (beta + betamin) / 2;
}
} else {
// normalize by row
for (int j = 0; j < n; j++) {
Pi[j] /= Pisum;
}
}
logger.debug("Hdiff = {}, beta[{}] = {}, H = {}, logU = {}", Hdiff, i, beta, H, logU);
}
});
return P;
}
/**
* Computes the Q matrix.
*/
private double computeQ(double[][] Y, double[][] Q) {
int n = Y.length;
// DoubleStream.sum is unreproducible across machines
// due to scheduling randomness. Therefore, we accumulate the
// row sum and then compute the overall sum.
double[] rowSum = IntStream.range(0, n).parallel().mapToDouble(i -> {
double[] Yi = Y[i];
double[] Qi = Q[i];
double sum = 0.0;
for (int j = 0; j < n; j++) {
double q = 1.0 / (1.0 + MathEx.squaredDistance(Yi, Y[j]));
Qi[j] = q;
sum += q;
}
return sum;
}).toArray();
return MathEx.sum(rowSum);
}
/**
* Computes the cost function.
*/
private double computeCost(double[][] P, double[][] Q) {
return 2 * IntStream.range(0, Q.length).parallel().mapToDouble(i -> {
double[] Pi = P[i];
double[] Qi = Q[i];
double C = 0.0;
for (int j = 0; j < i; j++) {
double p = Pi[j];
double q = Qi[j] / Qsum;
if (Double.isNaN(q) || q < 1E-16) q = 1E-16;
C += p * MathEx.log2(p / q);
}
return C;
}).sum();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy