All Downloads are FREE. Search and download functionalities are using the official Maven repository.

smile.manifold.UMAP Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
 *
 * Smile is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Smile is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Smile.  If not, see .
 */

package smile.manifold;

import java.io.Serial;
import java.io.Serializable;
import java.util.Collection;
import java.util.stream.IntStream;
import smile.graph.AdjacencyList;
import smile.graph.Graph.Edge;
import smile.math.DifferentiableMultivariateFunction;
import smile.math.LevenbergMarquardt;
import smile.math.MathEx;
import smile.math.distance.Distance;
import smile.math.distance.EuclideanDistance;
import smile.math.matrix.ARPACK;
import smile.math.matrix.Matrix;
import smile.math.matrix.SparseMatrix;
import smile.stat.distribution.GaussianDistribution;

/**
 * Uniform Manifold Approximation and Projection.
 * UMAP is a dimension reduction technique that can be used for visualization
 * similarly to t-SNE, but also for general non-linear dimension reduction.
 * The algorithm is founded on three assumptions about the data:
 * 
    *
  • The data is uniformly distributed on a Riemannian manifold;
  • *
  • The Riemannian metric is locally constant (or can be approximated as * such);
  • *
  • The manifold is locally connected.
  • *
* From these assumptions it is possible to model the manifold with a fuzzy * topological structure. The embedding is found by searching for a low * dimensional projection of the data that has the closest possible equivalent * fuzzy topological structure. *

References

*
    *
  1. McInnes, L, Healy, J, UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction, ArXiv e-prints 1802.03426, 2018
  2. *
  3. How UMAP Works
  4. *
* * @see TSNE * * @author rayeaster */ public class UMAP implements Serializable { @Serial private static final long serialVersionUID = 2L; private static final org.slf4j.Logger logger = org.slf4j.LoggerFactory.getLogger(UMAP.class); /** * The coordinate matrix in embedding space. */ public final double[][] coordinates; /** * The original sample index. */ public final int[] index; /** * The nearest neighbor graph. */ public final AdjacencyList graph; /** * Constructor. * @param index the original sample index. * @param coordinates the coordinates. * @param graph the nearest neighbor graph. */ public UMAP(int[] index, double[][] coordinates, AdjacencyList graph) { this.index = index; this.coordinates = coordinates; this.graph = graph; } /** * Runs the UMAP algorithm. * * @param data the input data. * @return the model. */ public static UMAP of(double[][] data) { return of(data, 15); } /** * Runs the UMAP algorithm. * * @param data the input data. * @param distance the distance function. * @param the data type of points. * @return the model. */ public static UMAP of(T[] data, Distance distance) { return of(data, distance, 15); } /** * Runs the UMAP algorithm. * * @param data the input data. * @param k k-nearest neighbors. Larger values result in more global views * of the manifold, while smaller values result in more local data * being preserved. Generally in the range 2 to 100. * @return the model. */ public static UMAP of(double[][] data, int k) { return of(data, new EuclideanDistance(), k); } /** * Runs the UMAP algorithm. * * @param data the input data. * @param distance the distance function. * @param k k-nearest neighbor. Larger values result in more global views * of the manifold, while smaller values result in more local data * being preserved. Generally in the range 2 to 100. * @param the data type of points. * @return the model. */ public static UMAP of(T[] data, Distance distance, int k) { return of(data, distance, k, 2, data.length > 10000 ? 200 : 500, 1.0, 0.1, 1.0, 5, 1.0); } /** * Runs the UMAP algorithm. * * @param data the input data. * @param k k-nearest neighbors. Larger values result in more global views * of the manifold, while smaller values result in more local data * being preserved. Generally in the range 2 to 100. * @param d The target embedding dimensions. defaults to 2 to provide easy * visualization, but can reasonably be set to any integer value * in the range 2 to 100. * @param iterations The number of iterations to optimize the * low-dimensional representation. Larger values result in more * accurate embedding. Muse be at least 10. Choose wise value * based on the size of the input data, e.g, 200 for large * data (10000+ samples), 500 for small. * @param learningRate The initial learning rate for the embedding optimization, * default 1. * @param minDist The desired separation between close points in the embedding * space. Smaller values will result in a more clustered/clumped * embedding where nearby points on the manifold are drawn closer * together, while larger values will result on a more even * disperse of points. The value should be set no-greater than * and relative to the spread value, which determines the scale * at which embedded points will be spread out. default 0.1. * @param spread The effective scale of embedded points. In combination with * minDist, this determines how clustered/clumped the embedded * points are. default 1.0. * @param negativeSamples The number of negative samples to select per positive sample * in the optimization process. Increasing this value will result * in greater repulsive force being applied, greater optimization * cost, but slightly more accuracy, default 5. * @param repulsionStrength Weighting applied to negative samples in low dimensional * embedding optimization. Values higher than one will result in * greater weight being given to negative samples, default 1.0. * @return the model. */ public static UMAP of(double[][] data, int k, int d, int iterations, double learningRate, double minDist, double spread, int negativeSamples, double repulsionStrength) { return of(data, new EuclideanDistance(), k, d, iterations, learningRate, minDist, spread, negativeSamples, repulsionStrength); } /** * Runs the UMAP algorithm. * * @param data the input data. * @param distance the distance function. * @param k k-nearest neighbor. Larger values result in more global views * of the manifold, while smaller values result in more local data * being preserved. Generally in the range 2 to 100. * @param d The target embedding dimensions. defaults to 2 to provide easy * visualization, but can reasonably be set to any integer value * in the range 2 to 100. * @param iterations The number of iterations to optimize the * low-dimensional representation. Larger values result in more * accurate embedding. Muse be at least 10. Choose wise value * based on the size of the input data, e.g, 200 for large * data (1000+ samples), 500 for small. * @param learningRate The initial learning rate for the embedding optimization, * default 1. * @param minDist The desired separation between close points in the embedding * space. Smaller values will result in a more clustered/clumped * embedding where nearby points on the manifold are drawn closer * together, while larger values will result on a more even * disperse of points. The value should be set no-greater than * and relative to the spread value, which determines the scale * at which embedded points will be spread out. default 0.1. * @param spread The effective scale of embedded points. In combination with * minDist, this determines how clustered/clumped the embedded * points are. default 1.0. * @param negativeSamples The number of negative samples to select per positive sample * in the optimization process. Increasing this value will result * in greater repulsive force being applied, greater optimization * cost, but slightly more accuracy, default 5. * @param repulsionStrength Weighting applied to negative samples in low dimensional * embedding optimization. Values higher than one will result in * greater weight being given to negative samples, default 1.0. * @param the data type of points. * @return the model. */ public static UMAP of(T[] data, Distance distance, int k, int d, int iterations, double learningRate, double minDist, double spread, int negativeSamples, double repulsionStrength) { if (d < 2) { throw new IllegalArgumentException("d must be greater than 1: " + d); } if (k < 2) { throw new IllegalArgumentException("k must be greater than 1: " + k); } if (minDist <= 0) { throw new IllegalArgumentException("minDist must greater than 0: " + minDist); } if (minDist > spread) { throw new IllegalArgumentException("minDist must be less than or equal to spread: " + minDist + ",spread=" + spread); } if (iterations < 10) { throw new IllegalArgumentException("epochs must be a positive integer of at least 10: " + iterations); } if (learningRate <= 0) { throw new IllegalArgumentException("learningRate must greater than 0: " + learningRate); } if (negativeSamples <= 0) { throw new IllegalArgumentException("negativeSamples must greater than 0: " + negativeSamples); } // Construct the local fuzzy simplicial set by locally approximating // geodesic distance at each point, and then combining all the local // fuzzy simplicial sets into a global one via a fuzzy union. AdjacencyList graph = NearestNeighborGraph.of(data, distance, k, true,null); NearestNeighborGraph nng = NearestNeighborGraph.largest(graph); graph = computeFuzzySimplicialSet(nng.graph, k, 64); SparseMatrix conorm = graph.toMatrix(); // Spectral embedding initialization double[][] coordinates = spectralLayout(graph, d); logger.info("Finish initialization with spectral layout"); // parameters for the differentiable curve used in lower // dimensional fuzzy simplicial complex construction. double[] curve = fitCurve(spread, minDist); logger.info("Finish fitting the curve parameters"); // Optimizing the embedding SparseMatrix epochs = computeEpochPerSample(conorm, iterations); logger.info("Start optimizing the layout"); optimizeLayout(coordinates, curve, epochs, iterations, learningRate, negativeSamples, repulsionStrength); return new UMAP(nng.index, coordinates, graph); } /** * The curve function: *

*

     * 1.0 / (1.0 + a * x ^ (2 * b))
     * 
*/ private static final DifferentiableMultivariateFunction func = new DifferentiableMultivariateFunction() { @Override public double f(double[] x) { return 1 / (1 + x[0] * Math.pow(x[2], x[1])); } @Override public double g(double[] x, double[] g) { double pow = Math.pow(x[2], x[1]); double de = 1 + x[0] * pow; g[0] = -pow / (de * de); g[1] = -(x[0] * x[1] * Math.log(x[2]) * pow) / (de * de); return 1 / de; } }; /** * Fits the differentiable curve used in lower dimensional fuzzy simplicial * complex construction. We want the smooth curve (from a pre-defined * family with simple gradient) that best matches an offset exponential decay. * * @param spread The effective scale of embedded points. In combination with * minDist, this determines how clustered/clumped the embedded * points are. default 1.0 * @param minDist The desired separation between close points in the embedding * space. The value should be set no-greater than and relative to * the spread value, which determines the scale at which embedded * points will be spread out, default 0.1 * @return the parameters of differentiable curve. */ private static double[] fitCurve(double spread, double minDist) { int size = 300; double[] x = new double[size]; double[] y = new double[size]; double end = 3 * spread; double interval = end / size; for (int i = 0; i < x.length; i++) { x[i] = (i + 1) * interval; y[i] = x[i] < minDist ? 1 : Math.exp(-(x[i] - minDist) / spread); } double[] p = {0.5, 0.0}; LevenbergMarquardt curveFit = LevenbergMarquardt.fit(func, x, y, p); return curveFit.parameters; } /** * Computes the fuzzy simplicial set as a fuzzy graph with the * probabilistic t-conorm. This is done by locally approximating * geodesic distance at each point, creating a fuzzy simplicial * set for each such point, and then combining all the local * fuzzy simplicial sets into a global one via a fuzzy union. * * @param nng The nearest neighbor graph. * @param k k-nearest neighbor. * @param iterations The max number of iterations of the binary search * for the correct distance value. default 64 * @return A fuzzy simplicial set represented as a sparse matrix. The (i, j) * entry of the matrix represents the membership strength of the * 1-simplex between the ith and jth sample points. */ private static AdjacencyList computeFuzzySimplicialSet(AdjacencyList nng, int k, int iterations) { // Algorithm 2 Constructing a local fuzzy simplicial set final double LogK = MathEx.log2(k); final double EPSILON = 1E-8; final double TOLERANCE = 1E-5; final double MIN_SCALE = 1E-3; int n = nng.getNumVertices(); // The smooth approximator to knn-distance double[] sigma = new double[n]; // The distance to nearest neighbor double[] rho = new double[n]; double avg = IntStream.range(0, n).mapToObj(nng::getEdges) .flatMapToDouble(edges -> edges.stream().mapToDouble(edge -> edge.weight)) .filter(w -> !MathEx.isZero(w, EPSILON)) .average().orElse(0.0); for (int i = 0; i < n; i++) { double lo = 0.0; double hi = Double.POSITIVE_INFINITY; double mid = 1.0; Collection knn = nng.getEdges(i); rho[i] = knn.stream() .mapToDouble(edge -> edge.weight) .filter(w -> !MathEx.isZero(w, EPSILON)) .min().orElse(0.0); // Algorithm 3 Compute the normalizing factor for distances // function SmoothKNNDist() by binary search for (int iter = 0; iter < iterations; iter++) { double psum = 0.0; for (Edge edge : knn) { if (!MathEx.isZero(edge.weight, EPSILON)) { double d = edge.weight - rho[i]; psum += d > 0.0 ? Math.exp(-d / mid) : 1.0; } } if (Math.abs(psum - LogK) < TOLERANCE) { break; } // Given that it is a parameterized function // and the whole thing is monotonic // a simply binary search is actually quite efficient. if (psum > LogK) { hi = mid; mid = (lo + hi) / 2.0; } else { lo = mid; if (Double.isInfinite(hi)) { mid *= 2; } else { mid = (lo + hi) / 2.0; } } } sigma[i] = mid; if (rho[i] > 0.0) { double avgi = knn.stream() .mapToDouble(edge -> edge.weight) .filter(w -> !MathEx.isZero(w, EPSILON)) .average().orElse(0.0); sigma[i] = Math.max(sigma[i], MIN_SCALE * avgi); } else { sigma[i] = Math.max(sigma[i], MIN_SCALE * avg); } } // Computes a continuous version of the distance to the kth nearest neighbor. // That is, this is similar to knn-distance but allows continuous k values // rather than requiring an integral k. In essence, we are simply computing // the distance such that the cardinality of fuzzy set we generate is k. for (int i = 0; i < n; i++) { for (Edge edge : nng.getEdges(i)) { edge.weight = Math.exp(-Math.max(0.0, (edge.weight - rho[i])) / sigma[i]); } } // probabilistic t-conorm: (a + a' - a .* a') AdjacencyList G = new AdjacencyList(n, false); for (int i = 0; i < n; i++) { for (Edge edge : nng.getEdges(i)) { double w = edge.weight; double w2 = nng.getWeight(edge.v2, edge.v1); // weight of reverse arc. G.setWeight(edge.v1, edge.v2, w + w2 - w * w2); } } return G; } /** * Computes the spectral embedding of the graph, which is * the eigenvectors of the (normalized) Laplacian of the graph. * * @param nng The nearest neighbor graph. * @param d The dimension of the embedding space. */ private static double[][] spectralLayout(AdjacencyList nng, int d) { // Algorithm 4 Spectral embedding for initialization int n = nng.getNumVertices(); double[] D = new double[n]; for (int i = 0; i < n; i++) { for (Edge edge : nng.getEdges(i)) { D[i] += edge.weight; } D[i] = 1.0 / Math.sqrt(D[i]); } // Laplacian of graph. AdjacencyList laplacian = new AdjacencyList(n, false); for (int i = 0; i < n; i++) { laplacian.setWeight(i, i, 1.0); for (Edge edge : nng.getEdges(i)) { double w = -D[edge.v1] * edge.weight * D[edge.v2]; laplacian.setWeight(edge.v1, edge.v2, w); } } SparseMatrix L = laplacian.toMatrix(); // ARPACK may not find all needed eigenvalues for k = d + 1. // Hack it with 10 * (d + 1). Matrix.EVD eigen = ARPACK.syev(L, ARPACK.SymmOption.SM, Math.min(10*(d+1), n-1)); double absMax = 0; Matrix V = eigen.Vr; double[][] coordinates = new double[n][d]; for (int j = d; --j >= 0; ) { int c = V.ncol() - j - 2; for (int i = 0; i < n; i++) { double x = V.get(i, c); coordinates[i][j] = x; double abs = Math.abs(x); if (abs > absMax) { absMax = abs; } } } // We add a little noise to avoid local minima for optimization to come double expansion = 10.0 / absMax; GaussianDistribution gaussian = new GaussianDistribution(0.0, 0.0001); for (int i = 0; i < n; i++) { for (int j = 0; j < d; j++) { coordinates[i][j] = coordinates[i][j] * expansion + gaussian.rand(); } } // normalization double[] colMax = MathEx.colMax(coordinates); double[] colMin = MathEx.colMin(coordinates); double[] de = new double[d]; for (int j = 0; j < d; j++) { de[j] = (colMax[j] - colMin[j]); } for (int i = 0; i < n; i++) { for (int j = 0; j < d; j++) { coordinates[i][j] = 10 * (coordinates[i][j] - colMin[j]) / de[j]; } } return coordinates; } /** * Improve an embedding using stochastic gradient descent to minimize the * fuzzy set cross entropy between the 1-skeletons of the high dimensional * and low dimensional fuzzy simplicial sets. In practice this is done by * sampling edges based on their membership strength (with the (1-p) terms * coming from negative sampling similar to word2vec). * * @param embedding The embeddings to be optimized * @param curve The curve parameters * @param epochsPerSample The number of epochs per 1-simplex between * (ith, jth) data points. 1-simplices with weaker membership * strength will have more epochs between being sampled. * @param negativeSamples The number of negative samples (with membership strength 0). * @param initialAlpha The initial learning rate for the SGD * @param gamma The weight of negative samples * @param iterations The number of iterations. */ private static void optimizeLayout(double[][] embedding, double[] curve, SparseMatrix epochsPerSample, int iterations, double initialAlpha, int negativeSamples, double gamma) { int n = embedding.length; int d = embedding[0].length; double a = curve[0]; double b = curve[1]; double alpha = initialAlpha; SparseMatrix epochsPerNegativeSample = epochsPerSample.copy(); epochsPerNegativeSample.nonzeros().forEach(w -> w.update(w.x / negativeSamples)); SparseMatrix epochNextNegativeSample = epochsPerNegativeSample.copy(); SparseMatrix epochNextSample = epochsPerSample.copy(); for (int iter = 1; iter <= iterations; iter++) { for (SparseMatrix.Entry edge : epochNextSample) { if (edge.x > 0 && edge.x <= iter) { int j = edge.i; int k = edge.j; int index = edge.index; double[] current = embedding[j]; double[] other = embedding[k]; double distSquared = MathEx.squaredDistance(current, other); if (distSquared > 0.0) { double gradCoeff = -2.0 * a * b * Math.pow(distSquared, b - 1.0); gradCoeff /= a * Math.pow(distSquared, b) + 1.0; for (int i = 0; i < d; i++) { double gradD = clamp(gradCoeff * (current[i] - other[i])); current[i] += gradD * alpha; other[i] -= gradD * alpha; } } edge.update(edge.x + epochsPerSample.get(index)); // negative sampling int negSamples = (int) ((iter - epochNextNegativeSample.get(index)) / epochsPerNegativeSample.get(index)); for (int p = 0; p < negSamples; p++) { k = MathEx.randomInt(n); if (j == k) continue; other = embedding[k]; distSquared = MathEx.squaredDistance(current, other); double gradCoeff = 0.0; if (distSquared > 0.0) { gradCoeff = 2.0 * gamma * b; gradCoeff /= (0.001 + distSquared) * (a * Math.pow(distSquared, b) + 1); } for (int i = 0; i < d; i++) { double gradD = 4.0; if (gradCoeff > 0.0) { gradD = clamp(gradCoeff * (current[i] - other[i])); } current[i] += gradD * alpha; } } epochNextNegativeSample.set(index, epochNextNegativeSample.get(index) + epochsPerNegativeSample.get(index) * negSamples); } } logger.info("The learning rate at {} iterations: {}", iter, alpha); alpha = initialAlpha * (1.0 - (double) iter / iterations); } } /** * Computes the number of epochs per sample, one for each 1-simplex. * * @param strength The strength matrix. * @param iterations The number of iterations. * @return An array of number of epochs per sample, one for each 1-simplex * between (ith, jth) sample point. */ private static SparseMatrix computeEpochPerSample(SparseMatrix strength, int iterations) { double max = strength.nonzeros().mapToDouble(w -> w.x).max().orElse(0.0); double min = max / iterations; strength.nonzeros().forEach(w -> { if (w.x < min) w.update(0.0); else w.update(max / w.x); }); return strength; } /** * Clamps a value to range [-4.0, 4.0]. */ private static double clamp(double val) { return Math.min(4.0, Math.max(val, -4.0)); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy