smile.regression.DataFrameRegression Maven / Gradle / Ivy
/*
* Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Smile. If not, see .
*/
package smile.regression;
import java.util.Arrays;
import java.util.Properties;
import smile.data.CategoricalEncoder;
import smile.data.DataFrame;
import smile.data.Tuple;
import smile.data.formula.Formula;
import smile.data.type.StructType;
/**
* Regression trait on DataFrame.
*
* @author Haifeng Li
*/
public interface DataFrameRegression extends Regression {
/**
* The regression trainer.
* @param the type of model.
*/
interface Trainer {
/**
* Fits a regression model with the default hyperparameters.
* @param formula a symbolic description of the model to be fitted.
* @param data the data frame of the explanatory and response variables.
* @return the model
*/
default M fit(Formula formula, DataFrame data) {
Properties params = new Properties();
return fit(formula, data, params);
}
/**
* Fits a regression model.
* @param formula a symbolic description of the model to be fitted.
* @param data the data frame of the explanatory and response variables.
* @param params the hyperparameters.
* @return the model
*/
M fit(Formula formula, DataFrame data, Properties params);
}
/**
* Returns the model formula.
* @return the model formula.
*/
Formula formula();
/**
* Returns the schema of predictors.
* @return the schema of predictors.
*/
StructType schema();
/**
* Predicts the dependent variables of a data frame.
*
* @param data the data frame.
* @return the predicted values.
*/
default double[] predict(DataFrame data) {
// Binds the formula to the data frame's schema in case that
// it is different from that of training data.
formula().bind(data.schema());
return data.stream().mapToDouble(this::predict).toArray();
}
/**
* Fits a vector regression model on data frame.
*
* @param formula a symbolic description of the model to be fitted.
* @param data the data frame of the explanatory and response variables.
* @param params the hyperparameters.
* @param trainer the training lambda.
* @return the model.
*/
static DataFrameRegression of(Formula formula, DataFrame data, Properties params, Regression.Trainer trainer) {
DataFrame X = formula.x(data);
StructType schema = X.schema();
double[][] x = X.toArray(false, CategoricalEncoder.DUMMY);
double[] y = formula.y(data).toDoubleArray();
Regression model = trainer.fit(x, y, params);
return new DataFrameRegression() {
@Override
public Formula formula() {
return formula;
}
@Override
public StructType schema() {
return schema;
}
@Override
public double predict(Tuple x) {
return model.predict(formula.x(x).toArray());
}
};
}
/**
* Return an ensemble of multiple base models to obtain better
* predictive performance.
*
* @param models the base models.
* @return the ensemble model.
*/
static DataFrameRegression ensemble(DataFrameRegression... models) {
return new DataFrameRegression() {
/** The ensemble is an online learner only if all the base models are. */
private final boolean online = Arrays.stream(models).allMatch(DataFrameRegression::online);
@Override
public boolean online() {
return online;
}
@Override
public Formula formula() {
return models[0].formula();
}
@Override
public StructType schema() {
return models[0].schema();
}
@Override
public double predict(Tuple x) {
double y = 0;
for (DataFrameRegression model : models) {
y += model.predict(x);
}
return y / models.length;
}
@Override
public void update(Tuple x, double y) {
for (DataFrameRegression model : models) {
model.update(x, y);
}
}
};
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy