All Downloads are FREE. Search and download functionalities are using the official Maven repository.

smile.regression.GaussianProcessRegression Maven / Gradle / Ivy

/*
 * Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
 *
 * Smile is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Smile is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Smile.  If not, see .
 */

package smile.regression;

import java.io.Serial;
import java.util.Arrays;
import java.util.Properties;
import smile.math.BFGS;
import smile.math.DifferentiableMultivariateFunction;
import smile.math.MathEx;
import smile.math.kernel.MercerKernel;
import smile.math.matrix.Matrix;
import smile.stat.distribution.MultivariateGaussianDistribution;

/**
 * Gaussian Process for Regression. A Gaussian process is a stochastic process
 * whose realizations consist of random values associated with every point in
 * a range of times (or of space) such that each such random variable has
 * a normal distribution. Moreover, every finite collection of those random
 * variables has a multivariate normal distribution.
 * 

* A Gaussian process can be used as a prior probability distribution over * functions in Bayesian inference. Given any set of N points in the desired * domain of your functions, take a multivariate Gaussian whose covariance * matrix parameter is the Gram matrix of N points with some desired kernel, * and sample from that Gaussian. Inference of continuous values with a * Gaussian process prior is known as Gaussian process regression. *

* The fitting is performed in the reproducing kernel Hilbert space with * the "kernel trick". The loss function is squared-error. This also arises * as the kriging estimate of a Gaussian random field in spatial statistics. *

* A significant problem with Gaussian process prediction is that it typically * scales as O(n3). For large problems (e.g. {@code n > 10,000}) both * storing the Gram matrix and solving the associated linear systems are * prohibitive on modern workstations. An extensive range of proposals have * been suggested to deal with this problem. A popular approach is the * reduced-rank Approximations of the Gram Matrix, known as Nystrom * approximation. Subset of Regressors (SR) is another popular approach * that uses an active set of training samples of size m selected from * the training set of size {@code n > m}. We assume that it is impossible * to search for the optimal subset of size m due to combinatorics. * The samples in the active set could be selected randomly, but in general * we might expect better performance if the samples are selected greedily * w.r.t. some criterion. Recently, researchers had proposed relaxing the * constraint that the inducing variables must be a subset of training/test * cases, turning the discrete selection problem into one of continuous * optimization. *

* Experimental evidence suggests that for large m the SR and Nystrom methods * have similar performance, but for small m the Nystrom method can be quite * poor. Also, embarrassments can occur like the approximated predictive * variance being negative. For these reasons we do not recommend the * Nystrom method over the SR method. * *

References

*
    *
  1. Carl Edward Rasmussen and Chris Williams. Gaussian Processes for Machine Learning, 2006.
  2. *
  3. Joaquin Quinonero-candela, Carl Edward Ramussen, Christopher K. I. Williams. Approximation Methods for Gaussian Process Regression. 2007.
  4. *
  5. T. Poggio and F. Girosi. Networks for approximation and learning. Proc. IEEE 78(9):1484-1487, 1990.
  6. *
  7. Kai Zhang and James T. Kwok. Clustered Nystrom Method for Large Scale Manifold Learning and Dimension Reduction. IEEE Transactions on Neural Networks, 2010.
  8. *
  9. *
* * @param the data type of model input objects. * * @author Haifeng Li */ public class GaussianProcessRegression implements Regression { @Serial private static final long serialVersionUID = 2L; /** * The covariance/kernel function. */ public final MercerKernel kernel; /** * The regressors. */ public final T[] regressors; /** * The linear weights. */ public final double[] w; /** * The mean of responsible variable. */ public final double mean; /** * The standard deviation of responsible variable. */ public final double sd; /** * The variance of noise. */ public final double noise; /** * The log marginal likelihood, which may be not available (NaN) when the model * is fit with approximate methods. */ public final double L; /** * The Cholesky decomposition of kernel matrix. */ private final Matrix.Cholesky cholesky; /** The joint prediction of multiple data points. */ public class JointPrediction { /** The query points where the GP is evaluated. */ public final T[] x; /** The mean of predictive distribution at query points. */ public final double[] mu; /** The standard deviation of predictive distribution at query points. */ public final double[] sd; /** The covariance matrix of joint predictive distribution at query points. */ public final Matrix cov; /** The joint predictive distribution. */ private MultivariateGaussianDistribution dist; /** * Constructor. * @param x the query points. * @param mu the mean of predictive distribution at query points. * @param sd the standard deviation of predictive distribution at query points. * @param cov the covariance matrix of joint predictive distribution at query points. */ public JointPrediction(T[] x, double[] mu, double[] sd, Matrix cov) { this.x = x; this.mu = mu; this.sd = sd; this.cov = cov; } /** * Draw samples from Gaussian process. * @param n The number of samples drawn from the Gaussian process. * @return n samples drawn from Gaussian process. */ public double[][] sample(int n) { if (dist == null) { dist = new MultivariateGaussianDistribution(mu, cov); } return dist.rand(n); } @Override public String toString() { return String.format("GaussianProcessRegression.Prediction {\n mean = %s\n std.dev = %s\n cov = %s\n}", Arrays.toString(mu), Arrays.toString(sd), cov.toString(true)); } } /** * Constructor. * @param kernel Kernel function. * @param regressors The regressors. * @param weight The weights of regressors. * @param noise The variance of noise. */ public GaussianProcessRegression(MercerKernel kernel, T[] regressors, double[] weight, double noise) { this(kernel, regressors, weight, noise, 0.0, 1.0); } /** * Constructor. * @param kernel Kernel function. * @param regressors The regressors. * @param weight The weights of regressors. * @param noise The variance of noise. * @param mean The mean of responsible variable. * @param sd The standard deviation of responsible variable. */ public GaussianProcessRegression(MercerKernel kernel, T[] regressors, double[] weight, double noise, double mean, double sd) { this(kernel, regressors, weight, noise, mean, sd, null, Double.NaN); } /** * Constructor. * @param kernel Kernel function. * @param regressors The regressors. * @param weight The weights of regressors. * @param noise The variance of noise. * @param mean The mean of responsible variable. * @param sd The standard deviation of responsible variable. * @param cholesky The Cholesky decomposition of kernel matrix. * @param L The log marginal likelihood. */ public GaussianProcessRegression(MercerKernel kernel, T[] regressors, double[] weight, double noise, double mean, double sd, Matrix.Cholesky cholesky, double L) { if (noise < 0.0) { throw new IllegalArgumentException("Invalid noise variance: " + noise); } this.kernel = kernel; this.regressors = regressors; this.w = weight; this.noise = noise; this.mean = mean; this.sd = sd; this.cholesky = cholesky; this.L = L; } @Override public double predict(T x) { int n = regressors.length; double mu = 0.0; for (int i = 0; i < n; i++) { mu += w[i] * kernel.k(x, regressors[i]); } return mu * sd + mean; } /** * Predicts the mean and standard deviation of an instance. * @param x an instance. * @param estimation an output array of the estimated mean and standard deviation. * @return the estimated mean value. */ public double predict(T x, double[] estimation) { if (cholesky == null) { throw new UnsupportedOperationException("The Cholesky decomposition of kernel matrix is not available."); } int n = regressors.length; double[] k = new double[n]; for (int i = 0; i < n; i++) { k[i] = kernel.k(x, regressors[i]); } double[] Kx = cholesky.solve(k); double mu = MathEx.dot(w, k); double sd = Math.sqrt(kernel.k(x, x) - MathEx.dot(Kx, k)); mu = mu * this.sd + this.mean; sd *= this.sd; estimation[0] = mu; estimation[1] = sd; return mu; } /** * Evaluates the Gaussian Process at some query points. * @param samples query points. * @return The mean, standard deviation and covariances of GP at query points. */ public JointPrediction query(T[] samples) { if (cholesky == null) { throw new UnsupportedOperationException("The Cholesky decomposition of kernel matrix is not available."); } Matrix Kx = kernel.K(samples); Matrix Kt = kernel.K(samples, regressors); Matrix Kv = Kt.transpose(false); cholesky.solve(Kv); Matrix cov = Kx.sub(Kt.mm(Kv)); cov.mul(sd * sd); double[] mu = Kt.mv(w); double[] std = cov.diag(); int m = samples.length; for (int i = 0; i < m; i++) { mu[i] = mu[i] * sd + mean; std[i] = Math.sqrt(std[i]); } return new JointPrediction(samples, mu, std, cov); } @Override public String toString() { StringBuilder sb = new StringBuilder("GaussianProcessRegression {\n"); sb.append(" kernel: ").append(kernel).append(",\n"); sb.append(" regressors: ").append(regressors.length).append(",\n"); sb.append(" mean: ").append(String.format("%.4f,\n", mean)); sb.append(" std.dev: ").append(String.format("%.4f,\n", sd)); sb.append(" noise: ").append(String.format("%.4f", noise)); if (!Double.isNaN(L)) { sb.append(",\n log marginal likelihood: ").append(String.format("%.4f", L)); } sb.append("\n}"); return sb.toString(); } /** * Fits a regular Gaussian process model. * @param x the training dataset. * @param y the response variable. * @param params the hyperparameters. * @return the model. */ public static GaussianProcessRegression fit(double[][] x, double[] y, Properties params) { MercerKernel kernel = MercerKernel.of(params.getProperty("smile.gaussian_process.kernel", "linear")); double noise = Double.parseDouble(params.getProperty("smile.gaussian_process.noise", "1E-10")); boolean normalize = Boolean.parseBoolean(params.getProperty("smile.gaussian_process.normalize", "true")); double tol = Double.parseDouble(params.getProperty("smile.gaussian_process.tolerance", "1E-5")); int maxIter = Integer.parseInt(params.getProperty("smile.gaussian_process.iterations", "0")); return fit(x, y, kernel, noise, normalize, tol, maxIter); } /** * Fits a regular Gaussian process model. * @param x the training dataset. * @param y the response variable. * @param kernel the Mercer kernel. * @param params the hyperparameters. * @param the data type of samples. * @return the model. */ public static GaussianProcessRegression fit(T[] x, double[] y, MercerKernel kernel, Properties params) { double noise = Double.parseDouble(params.getProperty("smile.gaussian_process.noise", "1E-10")); boolean normalize = Boolean.parseBoolean(params.getProperty("smile.gaussian_process.normalize", "true")); double tol = Double.parseDouble(params.getProperty("smile.gaussian_process.tolerance", "1E-5")); int maxIter = Integer.parseInt(params.getProperty("smile.gaussian_process.iterations", "0")); return fit(x, y, kernel, noise, normalize, tol, maxIter); } /** * Fits a regular Gaussian process model by the method of subset of regressors. * @param x the training dataset. * @param y the response variable. * @param kernel the Mercer kernel. * @param noise the noise variance, which also works as a regularization parameter. * @param the data type of samples. * @return the model. */ public static GaussianProcessRegression fit(T[] x, double[] y, MercerKernel kernel, double noise) { return fit(x, y, kernel, noise,true,1E-5, 0); } /** * Fits a regular Gaussian process model. * @param x the training dataset. * @param y the response variable. * @param kernel the Mercer kernel. * @param noise the noise variance, which also works as a regularization parameter. * @param normalize the flag if normalize the response variable. * @param tol the stopping tolerance for HPO. * @param maxIter the maximum number of iterations for HPO. No HPO if {@code maxIter <= 0}. * @param the data type of samples. * @return the model. */ public static GaussianProcessRegression fit(T[] x, double[] y, MercerKernel kernel, double noise, boolean normalize, double tol, int maxIter) { if (x.length != y.length) { throw new IllegalArgumentException(String.format("The sizes of X and Y don't match: %d != %d", x.length, y.length)); } if (noise < 0.0) { throw new IllegalArgumentException("Invalid noise variance = " + noise); } int n = x.length; double mean = 0.0; double sd = 1.0; if (normalize) { mean = MathEx.mean(y); sd = MathEx.sd(y); double[] target = new double[n]; for (int i = 0; i < n; i++) { target[i] = (y[i] - mean) / sd; } y = target; } if (maxIter > 0) { LogMarginalLikelihood objective = new LogMarginalLikelihood<>(x, y, kernel); double[] hp = kernel.hyperparameters(); double[] lo = kernel.lo(); double[] hi = kernel.hi(); int m = lo.length; double[] params = Arrays.copyOf(hp, m + 1); double[] l = Arrays.copyOf(lo, m + 1); double[] u = Arrays.copyOf(hi, m + 1); params[m] = noise; l[m] = 1E-10; u[m] = 1E5; BFGS.minimize(objective, 5, params, l, u, tol, maxIter); kernel = kernel.of(params); noise = params[params.length - 1]; } Matrix K = kernel.K(x); K.addDiag(noise); Matrix.Cholesky cholesky = K.cholesky(true); double[] w = cholesky.solve(y); double L = -0.5 * (MathEx.dot(y, w) + cholesky.logdet() + n * Math.log(2.0 * Math.PI)); return new GaussianProcessRegression<>(kernel, x, w, noise, mean, sd, cholesky, L); } /** * Fits an approximate Gaussian process model by the method of subset of regressors. * @param x the training dataset. * @param y the response variable. * @param t the inducing input, which are pre-selected or inducing samples * acting as active set of regressors. In simple case, these can * be chosen randomly from the training set or as the centers of * k-means clustering. * @param kernel the Mercer kernel. * @param params the hyperparameters. * @param the data type of samples. * @return the model. */ public static GaussianProcessRegression fit(T[] x, double[] y, T[] t, MercerKernel kernel, Properties params) { double noise = Double.parseDouble(params.getProperty("smile.gaussian_process.noise", "1E-10")); boolean normalize = Boolean.parseBoolean(params.getProperty("smile.gaussian_process.normalize", "true")); return fit(x, y, t, kernel, noise, normalize); } /** * Fits an approximate Gaussian process model by the method of subset of regressors. * @param x the training dataset. * @param y the response variable. * @param t the inducing input, which are pre-selected or inducing samples * acting as active set of regressors. In simple case, these can * be chosen randomly from the training set or as the centers of * k-means clustering. * @param kernel the Mercer kernel. * @param noise the noise variance, which also works as a regularization parameter. * @param the data type of samples. * @return the model. */ public static GaussianProcessRegression fit(T[] x, double[] y, T[] t, MercerKernel kernel, double noise) { return fit(x, y, t, kernel, noise, true); } /** * Fits an approximate Gaussian process model by the method of subset of regressors. * @param x the training dataset. * @param y the response variable. * @param t the inducing input, which are pre-selected or inducing samples * acting as active set of regressors. In simple case, these can * be chosen randomly from the training set or as the centers of * k-means clustering. * @param kernel the Mercer kernel. * @param noise the noise variance, which also works as a regularization parameter. * @param normalize the option to normalize the response variable. * @param the data type of samples. * @return the model. */ public static GaussianProcessRegression fit(T[] x, double[] y, T[] t, MercerKernel kernel, double noise, boolean normalize) { if (x.length != y.length) { throw new IllegalArgumentException(String.format("The sizes of X and Y don't match: %d != %d", x.length, y.length)); } if (noise < 0.0) { throw new IllegalArgumentException("Invalid noise variance = " + noise); } double mean = 0.0; double sd = 1.0; if (normalize) { mean = MathEx.mean(y); sd = MathEx.sd(y); int n = x.length; double[] target = new double[n]; for (int i = 0; i < n; i++) { target[i] = (y[i] - mean) / sd; } y = target; } Matrix G = kernel.K(x, t); Matrix K = G.ata(); Matrix Kt = kernel.K(t); K.add(noise, Kt); Matrix.LU lu = K.lu(true); double[] Gty = G.tv(y); double[] w = lu.solve(Gty); return new GaussianProcessRegression<>(kernel, t, w, noise, mean, sd); } /** * Fits an approximate Gaussian process model with Nystrom approximation of kernel matrix. * @param x the training dataset. * @param y the response variable. * @param t the inducing input, which are pre-selected for Nystrom approximation. * @param kernel the Mercer kernel. * @param params the hyperparameters. * @param the data type of samples. * @return the model. */ public static GaussianProcessRegression nystrom(T[] x, double[] y, T[] t, MercerKernel kernel, Properties params) { double noise = Double.parseDouble(params.getProperty("smile.gaussian_process.noise", "1E-10")); boolean normalize = Boolean.parseBoolean(params.getProperty("smile.gaussian_process.normalize", "true")); return nystrom(x, y, t, kernel, noise, normalize); } /** * Fits an approximate Gaussian process model with Nystrom approximation of kernel matrix. * @param x the training dataset. * @param y the response variable. * @param t the inducing input, which are pre-selected for Nystrom approximation. * @param kernel the Mercer kernel. * @param noise the noise variance, which also works as a regularization parameter. * @param the data type of samples. * @return the model. */ public static GaussianProcessRegression nystrom(T[] x, double[] y, T[] t, MercerKernel kernel, double noise) { return nystrom(x, y, t, kernel, noise, true); } /** * Fits an approximate Gaussian process model with Nystrom approximation of kernel matrix. * @param x the training dataset. * @param y the response variable. * @param t the inducing input, which are pre-selected for Nystrom approximation. * @param kernel the Mercer kernel. * @param noise the noise variance, which also works as a regularization parameter. * @param normalize the option to normalize the response variable. * @param the data type of samples. * @return the model. */ public static GaussianProcessRegression nystrom(T[] x, double[] y, T[] t, MercerKernel kernel, double noise, boolean normalize) { if (x.length != y.length) { throw new IllegalArgumentException(String.format("The sizes of X and Y don't match: %d != %d", x.length, y.length)); } if (noise < 0.0) { throw new IllegalArgumentException("Invalid noise variance = " + noise); } int n = x.length; int m = t.length; double mean = 0.0; double sd = 1.0; if (normalize) { mean = MathEx.mean(y); sd = MathEx.sd(y); double[] target = new double[n]; for (int i = 0; i < n; i++) { target[i] = (y[i] - mean) / sd; } y = target; } Matrix E = kernel.K(x, t); Matrix W = kernel.K(t); Matrix.EVD eigen = W.eigen(false, true, true).sort(); Matrix U = eigen.Vr; Matrix D = eigen.diag(); for (int i = 0; i < m; i++) { D.set(i, i, 1.0 / Math.sqrt(D.get(i, i))); } Matrix UD = U.mm(D); Matrix UDUt = UD.mt(U); Matrix L = E.mm(UDUt); Matrix LtL = L.ata(); LtL.addDiag(noise); Matrix.Cholesky chol = LtL.cholesky(true); Matrix invLtL = chol.inverse(); Matrix Kinv = L.mm(invLtL).mt(L); double[] w = Kinv.tv(y); for (int i = 0; i < n; i++) { w[i] = (y[i] - w[i]) / noise; } return new GaussianProcessRegression<>(kernel, x, w, noise, mean, sd); } /** * Log marginal likelihood as optimization objective function. * @param the data type of samples. */ private static class LogMarginalLikelihood implements DifferentiableMultivariateFunction { final T[] x; final double[] y; MercerKernel kernel; public LogMarginalLikelihood(T[] x, double[] y, MercerKernel kernel) { this.x = x; this.y = y; this.kernel = kernel; } @Override public double f(double[] params) { kernel = kernel.of(params); double noise = params[params.length - 1]; Matrix K = kernel.K(x); K.addDiag(noise); Matrix.Cholesky cholesky = K.cholesky(true); double[] w = cholesky.solve(y); int n = x.length; double L = -0.5 * (MathEx.dot(y, w) + cholesky.logdet() + n * Math.log(2.0 * Math.PI)); return -L; } @Override public double g(double[] params, double[] g) { kernel = kernel.of(params); double noise = params[params.length - 1]; Matrix[] K = kernel.KG(x); Matrix Ky = K[0]; Ky.addDiag(noise); Matrix.Cholesky cholesky = Ky.cholesky(true); Matrix Kinv = cholesky.inverse(); double[] w = Kinv.mv(y); g[g.length - 1] = -(MathEx.dot(w, w) - Kinv.trace()) / 2; for (int i = 1; i < g.length; i++) { Matrix Kg = K[i]; double gi = Kg.xAx(w) - Kinv.mm(Kg).trace(); g[i-1] = -gi / 2; } int n = x.length; double L = -0.5 * (MathEx.dot(y, w) + cholesky.logdet() + n * Math.log(2.0 * Math.PI)); return -L; } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy