smile.regression.MLP Maven / Gradle / Ivy
The newest version!
/*
* Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Smile. If not, see .
*/
package smile.regression;
import java.io.Serial;
import java.util.Arrays;
import java.util.Properties;
import smile.base.mlp.*;
import smile.math.Scaler;
import smile.math.MathEx;
import smile.util.Strings;
/**
* Fully connected multilayer perceptron neural network for regression.
* An MLP consists of at least three layers of nodes: an input layer,
* a hidden layer and an output layer. The nodes are interconnected
* through weighted acyclic arcs from each preceding layer to the
* following, without lateral or feedback connections. Each node
* calculates a transformed weighted linear combination of its inputs
* (output activations from the preceding layer), with one of the weights
* acting as a trainable bias connected to a constant input. The
* transformation, called activation function, is a bounded non-decreasing
* (non-linear) function.
*
* @author Haifeng Li
*/
public class MLP extends MultilayerPerceptron implements Regression {
@Serial
private static final long serialVersionUID = 2L;
private static final org.slf4j.Logger logger = org.slf4j.LoggerFactory.getLogger(MLP.class);
/** The scaling function of output values. */
private final Scaler scaler;
/**
* Constructor.
*
* @param builders the builders of input and hidden layers from bottom to top.
*/
public MLP(LayerBuilder... builders) {
this(null, builders);
}
/**
* Constructor.
*
* @param scaler the scaling function of output values.
* @param builders the builders of input and hidden layers from bottom to top.
*/
public MLP(Scaler scaler, LayerBuilder... builders) {
super(net(builders));
this.scaler = scaler;
}
/** Builds the layers. */
private static Layer[] net(LayerBuilder... builders) {
int p = 0;
int l = builders.length;
Layer[] net = new Layer[l];
for (int i = 0; i < l; i++) {
net[i] = builders[i].build(p);
p = builders[i].neurons();
}
if (!(net[l-1] instanceof OutputLayer)) {
net = Arrays.copyOf(net, l + 1);
net[l] = new OutputLayer(1, p, OutputFunction.LINEAR, Cost.MEAN_SQUARED_ERROR);
}
return net;
}
@Override
public double predict(double[] x) {
propagate(x, false);
double y = output.output()[0];
return scaler == null ? y : scaler.inv(y);
}
@Override
public boolean online() {
return true;
}
/** Updates the model with a single sample. RMSProp is not applied. */
@Override
public void update(double[] x, double y) {
propagate(x, true);
setTarget(y);
backpropagate(true);
t++;
}
/** Updates the model with a mini-batch. RMSProp is applied if {@code rho > 0}. */
@Override
public void update(double[][] x, double[] y) {
for (int i = 0; i < x.length; i++) {
propagate(x[i], true);
setTarget(y[i]);
backpropagate(false);
}
update(x.length);
t++;
}
/**
* Sets the network target value.
*
* @param y the raw responsible variable.
*/
private void setTarget(double y) {
target.get()[0] = scaler == null ? y : scaler.f(y);
}
/**
* Fits a MLP model.
* @param x the training dataset.
* @param y the response variable.
* @param params the hyperparameters.
* @return the model.
*/
public static MLP fit(double[][] x, double[] y, Properties params) {
int p = x[0].length;
Scaler scaler = Scaler.of(params.getProperty("smile.mlp.scaler"), y);
LayerBuilder[] layers = Layer.of(0, p, params.getProperty("smile.mlp.layers", "ReLU(100)"));
MLP model = new MLP(scaler, layers);
model.setParameters(params);
int epochs = Integer.parseInt(params.getProperty("smile.mlp.epochs", "100"));
int batch = Integer.parseInt(params.getProperty("smile.mlp.mini_batch", "32"));
double[][] batchx = new double[batch][];
double[] batchy = new double[batch];
for (int epoch = 1; epoch <= epochs; epoch++) {
logger.info("{} epoch", Strings.ordinal(epoch));
int[] permutation = MathEx.permutate(x.length);
for (int i = 0; i < x.length; i += batch) {
int size = Math.min(batch, x.length - i);
for (int j = 0; j < size; j++) {
int index = permutation[i + j];
batchx[j] = x[index];
batchy[j] = y[index];
}
if (size < batch) {
model.update(Arrays.copyOf(batchx, size), Arrays.copyOf(batchy, size));
} else {
model.update(batchx, batchy);
}
}
}
return model;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy