All Downloads are FREE. Search and download functionalities are using the official Maven repository.

smile.timeseries.ARMA Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
 *
 * Smile is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Smile is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Smile.  If not, see .
 */

package smile.timeseries;

import java.io.Serial;
import java.io.Serializable;
import java.util.Arrays;
import smile.math.MathEx;
import smile.math.matrix.Matrix;
import smile.math.special.Beta;
import smile.stat.Hypothesis;

/**
 * Autoregressive moving-average model. ARMA models provide a parsimonious
 * description of a (weakly) stationary stochastic process in terms of
 * two polynomials, one for the autoregression (AR) and the second for
 * the moving average (MA).
 * 

* Given a time series of data, the ARMA model is a tool for understanding * and, perhaps, predicting future values in this series. The AR part * involves regressing the variable on its own lagged values. * The MA part involves modeling the error term as a linear combination * of error terms occurring contemporaneously and at various times in * the past. The model is usually referred to as the ARMA(p,q) model * where p is the order of the AR part and q is the order of the MA part. * * @author Haifeng Li */ public class ARMA implements Serializable { @Serial private static final long serialVersionUID = 2L; /** * The time series. */ private final double[] x; /** * The mean of time series. */ private final double mean; /** * The order of AR. */ private final int p; /** * The order of MA. */ private final int q; /** * The intercept. */ private final double b; /** * The linear weights of AR. */ private final double[] ar; /** * The linear weights of MA. */ private final double[] ma; /** * The coefficients, their standard errors, t-scores, and p-values. */ private double[][] ttest; /** * The fitted values. */ private final double[] fittedValues; /** * The residuals, that is response minus fitted values. */ private final double[] residuals; /** * Residual sum of squares. */ private double RSS; /** * Estimated variance. */ private final double variance; /** * The degree-of-freedom of residual variance. */ private final int df; /** * R2. R2 is a statistic that will give some information * about the goodness of fit of a model. In regression, the R2 * coefficient of determination is a statistical measure of how well * the regression line approximates the real data points. An R2 * of 1.0 indicates that the regression line perfectly fits the data. *

* In the case of ordinary least-squares regression, R2 * increases as we increase the number of variables in the model * (R2 will not decrease). This illustrates a drawback to * one possible use of R2, where one might try to include * more variables in the model until "there is no more improvement". * This leads to the alternative approach of looking at the * adjusted R2. */ private final double R2; /** * Adjusted R2. The adjusted R2 has almost same * explanation as R2, but it penalizes the statistic as * extra variables are included in the model. */ private final double adjustedR2; /** * Constructor. * * @param x the time series * @param ar the estimated weight parameters of AR(p). * @param ma the estimated weight parameters of MA(q). * @param b the intercept. * @param fittedValues the fitted values. * @param residuals the residuals. */ public ARMA(double[] x, double[] ar, double[] ma, double b, double[] fittedValues, double[] residuals) { this.x = x; this.p = ar.length; this.q = ma.length; this.ar = ar; this.ma = ma; this.b = b; this.mean = MathEx.mean(x); this.fittedValues = fittedValues; this.residuals = residuals; int n = residuals.length; double ybar = 0; for (int i = x.length - n; i < x.length; i++) { ybar += x[i]; } ybar /= n; double TSS = 0.0; RSS = 0.0; for (int i = 0; i < n; i++) { RSS += MathEx.pow2(residuals[i]); TSS += MathEx.pow2(fittedValues[i] - ybar); } df = n; variance = RSS / df; R2 = 1.0 - RSS / TSS; adjustedR2 = 1.0 - ((1 - R2) * (n-1) / (n-p)); } /** * Returns the time series. * @return the time series. */ public double[] x() { return x; } /** * Returns the mean of time series. * @return the mean of time series. */ public double mean() { return mean; } /** * Returns the order of AR. * @return the order of AR. */ public int p() { return p; } /** * Returns the order of MA. * @return the order of MA. */ public int q() { return q; } /** * Returns the t-test of the coefficients (including intercept). * The first column is the coefficients, the second column is the standard * error of coefficients, the third column is the t-score of the hypothesis * test if the coefficient is zero, the fourth column is the p-values of * test. The last row is of intercept. * * @return the t-test of the coefficients. */ public double[][] ttest() { return ttest; } /** * Returns the linear coefficients of AR(p). * @return the linear coefficients of AR(p). */ public double[] ar() { return ar; } /** * Returns the linear coefficients of MA(q). * @return the linear coefficients of MA(q). */ public double[] ma() { return ma; } /** * Returns the intercept. * @return the intercept. */ public double intercept() { return b; } /** * Returns the residuals, that is response minus fitted values. * @return the residuals. */ public double[] residuals() { return residuals; } /** * Returns the fitted values. * @return the fitted values. */ public double[] fittedValues() { return fittedValues; } /** * Returns the residual sum of squares. * @return the residual sum of squares. */ public double RSS() { return RSS; } /** * Returns the residual variance. * @return the residual variance. */ public double variance() { return variance; } /** * Returns the degree-of-freedom of residual standard error. * @return the degree-of-freedom of residual standard error. */ public int df() { return df; } /** * Returns R2 statistic. In regression, the R2 * coefficient of determination is a statistical measure of how well * the regression line approximates the real data points. An R2 * of 1.0 indicates that the regression line perfectly fits the data. *

* In the case of ordinary least-squares regression, R2 * increases as we increase the number of variables in the model * (R2 will not decrease). This illustrates a drawback to * one possible use of R2, where one might try to include more * variables in the model until "there is no more improvement". This leads * to the alternative approach of looking at the adjusted R2. * * @return R2 statistic. */ public double R2() { return R2; } /** * Returns adjusted R2 statistic. The adjusted R2 * has almost same explanation as R2, but it penalizes the * statistic as extra variables are included in the model. * * @return Adjusted R2 statistic. */ public double adjustedR2() { return adjustedR2; } /** * Fits an ARMA model with Hannan-Rissanen algorithm. * * @param x the time series. * @param p the order of AR. * @param q the order of MA. * @return the model. */ public static ARMA fit(double[] x, int p, int q) { if (p <= 0 || p >= x.length) { throw new IllegalArgumentException("Invalid order p = " + p); } if (q <= 0 || q >= x.length) { throw new IllegalArgumentException("Invalid order q = " + q); } int m = p + q + 20; int k = Math.max(p, q); int n = x.length - m - k; AR arm = AR.fit(x, m); double[] a = new double[x.length]; System.arraycopy(arm.residuals(), 0, a, m, a.length - m); double[] y = Arrays.copyOfRange(x, m+k, x.length); Matrix X = new Matrix(n, p+q+1); for (int j = 0; j < p; j++) { for (int i = 0; i < n; i++) { X.set(i, j, x[m+k+i-j-1]); } } for (int j = 0; j < q; j++) { for (int i = 0; i < n; i++) { X.set(i, p+j, a[m+k+i-j-1]); } } for (int i = 0; i < n; i++) { X.set(i, p+q, 1.0); } Matrix.SVD svd = X.svd(true, false); double[] arma = svd.solve(y); double[] fittedValues = X.mv(arma); for (int j = 0; j < n; j++) { a[m+k+j] = x[m+k+j] - fittedValues[j]; } double[] ar = Arrays.copyOf(arma, p); double[] ma = Arrays.copyOfRange(arma, p, p+q); ARMA model = new ARMA(x, ar, ma, arma[p+q], fittedValues, Arrays.copyOfRange(a, m+k, n)); Matrix.Cholesky cholesky = X.ata().cholesky(true); Matrix inv = cholesky.inverse(); int df = model.df; double error = Math.sqrt(model.variance); double[][] ttest = new double[p+q][4]; model.ttest = ttest; for (int i = 0; i < p+q; i++) { ttest[i][0] = arma[i]; double se = error * Math.sqrt(inv.get(i, i)); ttest[i][1] = se; double t = arma[i] / se; ttest[i][2] = t; ttest[i][3] = Beta.regularizedIncompleteBetaFunction(0.5 * df, 0.5, df / (df + t * t)); } return model; } /** * Predicts/forecasts x[offset]. * * @param x the time series. * @param a the white noise error terms. * @param offset the offset of time series to forecast. * @return the model. */ private double forecast(double[] x, double[] a, int offset) { double y = b; for (int i = 0; i < p; i++) { y += ar[i] * x[offset - i - 1]; } offset -= x.length - a.length; for (int i = 0; i < q; i++) { y += ma[i] * a[offset - i - 1]; } return y; } /** * Returns 1-step ahead forecast. * @return 1-step ahead forecast. */ public double forecast() { return forecast(x, residuals, x.length); } /** * Returns l-step ahead forecast. * @param l the number of steps. * @return l-step ahead forecast. */ public double[] forecast(int l) { int k = Math.max(p, q); double[] x = new double[k + l]; double[] a = new double[k + l]; System.arraycopy(this.x, this.x.length - k, x, 0, k); System.arraycopy(this.residuals, this.residuals.length - k, a, 0, k); for (int i = 0; i < l; i++) { x[p + i] = forecast(x, a, k+i); } return Arrays.copyOfRange(x, k, x.length); } @Override public String toString() { StringBuilder builder = new StringBuilder(); builder.append(String.format("ARMA(%d, %d):\n", p, q)); double[] r = residuals.clone(); builder.append("\nResiduals:\n"); builder.append(" Min 1Q Median 3Q Max\n"); builder.append(String.format("%10.4f %10.4f %10.4f %10.4f %10.4f%n", MathEx.min(r), MathEx.q1(r), MathEx.median(r), MathEx.q3(r), MathEx.max(r))); builder.append("\nCoefficients:\n"); if (ttest != null) { builder.append(" Estimate Std. Error t value Pr(>|t|)\n"); if (b != 0.0) { builder.append(String.format("Intercept %10.4f%n", b)); } for (int i = 0; i < ttest.length; i++) { builder.append(String.format("%s[-%d]\t %10.4f %10.4f %10.4f %10.4f %s%n", i < p ? "ar" : "ma", i+1, ttest[i][0], ttest[i][1], ttest[i][2], ttest[i][3], Hypothesis.significance(ttest[i][3]))); } builder.append("---------------------------------------------------------------------\n"); builder.append("Significance codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n"); } else { if (b != 0.0) { builder.append(String.format("Intercept %10.4f%n", b)); } for (int i = 0; i < p; i++) { builder.append(String.format("ar[-%d]\t %10.4f%n", i+1, ar[i])); } for (int i = 0; i < q; i++) { builder.append(String.format("ma[-%d]\t %10.4f%n", i+1, ma[i])); } } builder.append(String.format("%nResidual variance: %.4f on %5d degrees of freedom%n", variance, df)); builder.append(String.format("Multiple R-squared: %.4f, Adjusted R-squared: %.4f%n", R2, adjustedR2)); return builder.toString(); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy