smile.timeseries.TimeSeries Maven / Gradle / Ivy
The newest version!
/*
* Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Smile. If not, see .
*/
package smile.timeseries;
import smile.math.MathEx;
import smile.math.matrix.Matrix;
/**
* Time series utility functions.
*
* @author Haifeng Li
*/
public interface TimeSeries {
/**
* Returns the first-differencing of time series. First-differencing a time
* series will remove a linear trend (i.e., differences=1).
* In addition, first-differencing a time series at a lag equal to the
* period will remove a seasonal trend (e.g., set lag=12 for monthly data).
*
* @param x time series
* @param lag the lag at which to difference
* @return the first-differencing of time series.
*/
static double[] diff(double[] x, int lag) {
return diff(x, lag, 1)[0];
}
/**
* Returns the differencing of time series. First-differencing a time
* series will remove a linear trend (i.e., differences=1);
* twice-differencing will remove a quadratic trend (i.e., differences=2).
* In addition, first-differencing a time series at a lag equal to the
* period will remove a seasonal trend (e.g., set lag=12 for monthly data).
*
* @param x time series
* @param lag the lag at which to difference
* @param differences the order of differencing
* @return the differencing of time series.
*/
static double[][] diff(double[] x, int lag, int differences) {
double[][] diff = new double[differences][];
for (int d = 0; d < differences; d++) {
int n = x.length - lag;
double[] y = new double[n];
for (int i = 0; i < n; i++) {
y[i] = x[i + lag] - x[i];
}
diff[d] = y;
x = diff[d];
}
return diff;
}
/**
* Autocovariance function.
*
* @param x time series.
* @param lag the lag.
* @return autocovariance.
*/
static double cov(double[] x, int lag) {
if (lag < 0) {
lag = -lag;
}
int T = x.length;
double mu = MathEx.mean(x);
double cov = 0.0;
for (int i = lag; i < T; i++) {
cov += (x[i] - mu) * (x[i-lag] - mu);
}
return cov;
}
/**
* Autocorrelation function.
*
* @param x time series.
* @param lag the lag.
* @return autocorrelation.
*/
static double acf(double[] x, int lag) {
if (lag == 0) {
return 1.0;
}
if (lag < 0) {
lag = -lag;
}
int T = x.length;
double mu = MathEx.mean(x);
double variance = 0.0;
for (int i = 0; i < lag; i++) {
variance += MathEx.pow2(x[i] - mu);
}
double cov = 0.0;
for (int i = lag; i < T; i++) {
cov += (x[i] - mu) * (x[i-lag] - mu);
variance += MathEx.pow2(x[i] - mu);
}
return cov / variance;
}
/**
* Partial autocorrelation function. The partial autocorrelation function
* (PACF) gives the partial correlation of a stationary time series with
* its own lagged values, regressed the values of the time series at all
* shorter lags.
*
* @param x time series.
* @param lag the lag.
* @return partial autocorrelation.
*/
static double pacf(double[] x, int lag) {
if (lag < 0) {
lag = -lag;
}
if (lag <= 1) {
return acf(x, lag);
}
double[] r = new double[lag];
for (int i = 0; i < lag; i++) {
r[i] = acf(x, i+1);
}
double[] r1 = new double[lag];
r1[0] = 1.0;
System.arraycopy(r, 0, r1, 1, lag - 1);
Matrix toeplitz = Matrix.toeplitz(r1);
Matrix.Cholesky cholesky = toeplitz.cholesky();
double[] pacf = cholesky.solve(r);
return pacf[lag - 1];
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy