smile.validation.metric.AdjustedMutualInformation Maven / Gradle / Ivy
The newest version!
/*
* Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Smile. If not, see .
*/
package smile.validation.metric;
import java.io.Serial;
import java.util.Arrays;
import smile.math.MathEx;
import static java.lang.Math.exp;
import static java.lang.Math.log;
import static smile.math.MathEx.lfactorial;
/**
* Adjusted Mutual Information (AMI) for comparing clustering.
* Like the Rand index, the baseline value of mutual information between two
* random clusterings does not take on a constant value, and tends to be
* larger when the two partitions have a larger number of clusters (with
* a fixed number of observations). AMI adopts a hypergeometric model of
* randomness to adjust for chance. The AMI takes a value of 1 when the
* two partitions are identical and 0 when the MI between two partitions
* equals the value expected due to chance alone.
*
* WARNING: The computation of adjustment is really slow.
*
*
References
*
* - X. Vinh, J. Epps, J. Bailey. Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance. JMLR, 2010.
*
*
* @author Haifeng Li
*/
public class AdjustedMutualInformation implements ClusteringMetric {
@Serial
private static final long serialVersionUID = 2L;
/** Default instance with max normalization. */
public static final AdjustedMutualInformation MAX = new AdjustedMutualInformation(Method.MAX);
/** Default instance with min normalization. */
public static final AdjustedMutualInformation MIN = new AdjustedMutualInformation(Method.MIN);
/** Default instance with sum normalization. */
public static final AdjustedMutualInformation SUM = new AdjustedMutualInformation(Method.SUM);
/** Default instance with sqrt normalization. */
public static final AdjustedMutualInformation SQRT = new AdjustedMutualInformation(Method.SQRT);
/** The normalization method. */
private final Method method;
/** The normalization method. */
public enum Method {
/** I(y1, y2) / max(H(y1), H(y2)) */
MAX,
/** I(y1, y2) / min(H(y1), H(y2)) */
MIN,
/** 2 * I(y1, y2) / (H(y1) + H(y2)) */
SUM,
/** I(y1, y2) / sqrt(H(y1) * H(y2)) */
SQRT
}
/**
* Constructor.
* @param method the normalization method.
*/
public AdjustedMutualInformation(Method method) {
this.method = method;
}
@Override
public double score(int[] y1, int[] y2) {
return switch (method) {
case MAX -> max(y1, y2);
case MIN -> min(y1, y2);
case SUM -> sum(y1, y2);
case SQRT -> sqrt(y1, y2);
};
}
/**
* Calculates the adjusted mutual information of (I(y1, y2) - E(MI)) / (max(H(y1), H(y2)) - E(MI)).
* @param y1 the clustering labels.
* @param y2 the alternative cluster labels.
* @return the metric.
*/
public static double max(int[] y1, int[] y2) {
ContingencyTable contingency = new ContingencyTable(y1, y2);
double n = contingency.n;
double[] p1 = Arrays.stream(contingency.a).mapToDouble(a -> a/n).toArray();
double[] p2 = Arrays.stream(contingency.b).mapToDouble(b -> b/n).toArray();
double h1 = MathEx.entropy(p1);
double h2 = MathEx.entropy(p2);
double I = MutualInformation.of(contingency.n, p1, p2, contingency.table);
double E = E(contingency.n, contingency.a, contingency.b);
return (I - E) / (Math.max(h1, h2) - E);
}
/**
* Calculates the adjusted mutual information of (I(y1, y2) - E(MI)) / (0.5 * (H(y1) + H(y2)) - E(MI)).
* @param y1 the clustering labels.
* @param y2 the alternative cluster labels.
* @return the metric.
*/
public static double sum(int[] y1, int[] y2) {
ContingencyTable contingency = new ContingencyTable(y1, y2);
double n = contingency.n;
double[] p1 = Arrays.stream(contingency.a).mapToDouble(a -> a/n).toArray();
double[] p2 = Arrays.stream(contingency.b).mapToDouble(b -> b/n).toArray();
double h1 = MathEx.entropy(p1);
double h2 = MathEx.entropy(p2);
double I = MutualInformation.of(contingency.n, p1, p2, contingency.table);
double E = E(contingency.n, contingency.a, contingency.b);
return (I - E) / (0.5 * (h1 + h2) - E);
}
/**
* Calculates the adjusted mutual information of (I(y1, y2) - E(MI)) / (sqrt(H(y1) * H(y2)) - E(MI)).
* @param y1 the clustering labels.
* @param y2 the alternative cluster labels.
* @return the metric.
*/
public static double sqrt(int[] y1, int[] y2) {
ContingencyTable contingency = new ContingencyTable(y1, y2);
double n = contingency.n;
double[] p1 = Arrays.stream(contingency.a).mapToDouble(a -> a/n).toArray();
double[] p2 = Arrays.stream(contingency.b).mapToDouble(b -> b/n).toArray();
double h1 = MathEx.entropy(p1);
double h2 = MathEx.entropy(p2);
double I = MutualInformation.of(contingency.n, p1, p2, contingency.table);
double E = E(contingency.n, contingency.a, contingency.b);
return (I - E) / (Math.sqrt(h1 * h2) - E);
}
/**
* Calculates the adjusted mutual information of (I(y1, y2) - E(MI)) / (min(H(y1), H(y2)) - E(MI)).
* @param y1 the clustering labels.
* @param y2 the alternative cluster labels.
* @return the metric.
*/
public static double min(int[] y1, int[] y2) {
ContingencyTable contingency = new ContingencyTable(y1, y2);
double n = contingency.n;
double[] p1 = Arrays.stream(contingency.a).mapToDouble(a -> a/n).toArray();
double[] p2 = Arrays.stream(contingency.b).mapToDouble(b -> b/n).toArray();
double h1 = MathEx.entropy(p1);
double h2 = MathEx.entropy(p2);
double I = MutualInformation.of(contingency.n, p1, p2, contingency.table);
double E = E(contingency.n, contingency.a, contingency.b);
return (I - E) / (Math.min(h1, h2) - E);
}
/** Calculates the expected value of mutual information. */
private static double E(int n, int[] a, int[] b) {
double N = n;
double E = 0.0;
for (int ai : a) {
for (int bj : b) {
int begin = Math.max(1, ai + bj - n);
int end = Math.min(ai, bj);
for (int nij = begin; nij <= end; nij++) {
E += (nij / N) * log((nij * N) / (ai * bj))
* exp((lfactorial(ai) + lfactorial(bj) + lfactorial(n - ai) + lfactorial(n - bj))
- (lfactorial(n) + lfactorial(nij) + lfactorial(ai - nij) + lfactorial(bj - nij) + lfactorial(n - ai - bj + nij)));
}
}
}
return E;
}
@Override
public String toString() {
return String.format("AdjustedMutualInformation(%s)", method);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy