smile.validation.metric.MutualInformation Maven / Gradle / Ivy
The newest version!
/*
* Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Smile. If not, see .
*/
package smile.validation.metric;
import java.io.Serial;
import java.util.Arrays;
/**
* Mutual Information for comparing clustering.
*
* References
*
* - X. Vinh, J. Epps, J. Bailey. Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance. JMLR, 2010.
*
*
* @author Haifeng Li
*/
public class MutualInformation implements ClusteringMetric {
@Serial
private static final long serialVersionUID = 2L;
/** Default instance. */
public static final MutualInformation instance = new MutualInformation();
@Override
public double score(int[] truth, int[] cluster) {
return of(truth, cluster);
}
/**
* Calculates the mutual information.
* @param truth the ground truth (or simply a clustering labels).
* @param cluster the alternative cluster labels.
* @return the metric.
*/
public static double of(int[] truth, int[] cluster) {
ContingencyTable contingency = new ContingencyTable(truth, cluster);
double n = contingency.n;
double[] p1 = Arrays.stream(contingency.a).mapToDouble(a -> a/n).toArray();
double[] p2 = Arrays.stream(contingency.b).mapToDouble(b -> b/n).toArray();
return of(n, p1, p2, contingency.table);
}
/**
* Calculates the mutual information.
* @param n the data size.
* @param p1 the row marginal probability of contingency table.
* @param p2 the column marginal probability of contingency table.
* @param count the contingency table.
* @return the metric.
*/
static double of(double n, double[] p1, double[] p2, int[][] count) {
int n1 = p1.length;
int n2 = p2.length;
double I = 0.0;
for (int i = 0; i < n1; i++) {
for (int j = 0; j < n2; j++) {
if (count[i][j] > 0) {
double p = count[i][j] / n;
I += p * Math.log(p/(p1[i]*p2[j]));
}
}
}
return I;
}
@Override
public String toString() {
return "MutualInformation";
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy