All Downloads are FREE. Search and download functionalities are using the official Maven repository.

smile.validation.metric.MutualInformation Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
 *
 * Smile is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Smile is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Smile.  If not, see .
 */

package smile.validation.metric;

import java.io.Serial;
import java.util.Arrays;

/**
 * Mutual Information for comparing clustering.
 *
 * 

References

*
    *
  1. X. Vinh, J. Epps, J. Bailey. Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance. JMLR, 2010.
  2. *
* * @author Haifeng Li */ public class MutualInformation implements ClusteringMetric { @Serial private static final long serialVersionUID = 2L; /** Default instance. */ public static final MutualInformation instance = new MutualInformation(); @Override public double score(int[] truth, int[] cluster) { return of(truth, cluster); } /** * Calculates the mutual information. * @param truth the ground truth (or simply a clustering labels). * @param cluster the alternative cluster labels. * @return the metric. */ public static double of(int[] truth, int[] cluster) { ContingencyTable contingency = new ContingencyTable(truth, cluster); double n = contingency.n; double[] p1 = Arrays.stream(contingency.a).mapToDouble(a -> a/n).toArray(); double[] p2 = Arrays.stream(contingency.b).mapToDouble(b -> b/n).toArray(); return of(n, p1, p2, contingency.table); } /** * Calculates the mutual information. * @param n the data size. * @param p1 the row marginal probability of contingency table. * @param p2 the column marginal probability of contingency table. * @param count the contingency table. * @return the metric. */ static double of(double n, double[] p1, double[] p2, int[][] count) { int n1 = p1.length; int n2 = p2.length; double I = 0.0; for (int i = 0; i < n1; i++) { for (int j = 0; j < n2; j++) { if (count[i][j] > 0) { double p = count[i][j] / n; I += p * Math.log(p/(p1[i]*p2[j])); } } } return I; } @Override public String toString() { return "MutualInformation"; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy