smile.validation.metric.NormalizedMutualInformation Maven / Gradle / Ivy
The newest version!
/*
* Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Smile. If not, see .
*/
package smile.validation.metric;
import java.io.Serial;
import java.util.Arrays;
import smile.math.MathEx;
import static java.lang.Math.log;
/**
* Normalized Mutual Information (NMI) for comparing clustering.
* Normalized mutual information is between 0 (no mutual information)
* and 1 (perfect correlation). Normalization has been
* shown to improve the sensitiveness with respect to the
* difference in cluster distribution in the two clusterings.
*
* References
*
* - X. Vinh, J. Epps, J. Bailey. Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance. JMLR, 2010.
*
*
* @author Haifeng Li
*/
public class NormalizedMutualInformation implements ClusteringMetric {
@Serial
private static final long serialVersionUID = 2L;
/** Default instance with max normalization. */
public static final NormalizedMutualInformation JOINT = new NormalizedMutualInformation(Method.JOINT);
/** Default instance with max normalization. */
public static final NormalizedMutualInformation MAX = new NormalizedMutualInformation(Method.MAX);
/** Default instance with min normalization. */
public static final NormalizedMutualInformation MIN = new NormalizedMutualInformation(Method.MIN);
/** Default instance with sum normalization. */
public static final NormalizedMutualInformation SUM = new NormalizedMutualInformation(Method.SUM);
/** Default instance with sqrt normalization. */
public static final NormalizedMutualInformation SQRT = new NormalizedMutualInformation(Method.SQRT);
/** The normalization method. */
private final Method method;
/** The normalization method. */
public enum Method {
/** I(y1, y2) / H(y1, y2) */
JOINT,
/** I(y1, y2) / max(H(y1), H(y2)) */
MAX,
/** I(y1, y2) / min(H(y1), H(y2)) */
MIN,
/** 2 * I(y1, y2) / (H(y1) + H(y2)) */
SUM,
/** I(y1, y2) / sqrt(H(y1) * H(y2)) */
SQRT
}
/**
* Constructor.
* @param method the normalization method.
*/
public NormalizedMutualInformation(Method method) {
this.method = method;
}
@Override
public double score(int[] y1, int[] y2) {
return switch (method) {
case JOINT -> joint(y1, y2);
case MAX -> max(y1, y2);
case MIN -> min(y1, y2);
case SUM -> sum(y1, y2);
case SQRT -> sqrt(y1, y2);
};
}
/**
* Calculates the normalized mutual information of I(y1, y2) / H(y1, y2).
* @param y1 the clustering labels.
* @param y2 the alternative cluster labels.
* @return the metric.
*/
public static double joint(int[] y1, int[] y2) {
ContingencyTable contingency = new ContingencyTable(y1, y2);
double n = contingency.n;
double[] p1 = Arrays.stream(contingency.a).mapToDouble(a -> a/n).toArray();
double[] p2 = Arrays.stream(contingency.b).mapToDouble(b -> b/n).toArray();
double I = MutualInformation.of(contingency.n, p1, p2, contingency.table);
int n1 = p1.length;
int n2 = p2.length;
int[][] count = contingency.table;
double H = 0.0;
for (int i = 0; i < n1; i++) {
for (int j = 0; j < n2; j++) {
if (count[i][j] > 0) {
double p = count[i][j] / n;
H -= p * log(p);
}
}
}
return I / H;
}
/**
* Calculates the normalized mutual information of I(y1, y2) / max(H(y1), H(y2)).
* @param y1 the clustering labels.
* @param y2 the alternative cluster labels.
* @return the metric.
*/
public static double max(int[] y1, int[] y2) {
ContingencyTable contingency = new ContingencyTable(y1, y2);
double n = contingency.n;
double[] p1 = Arrays.stream(contingency.a).mapToDouble(a -> a/n).toArray();
double[] p2 = Arrays.stream(contingency.b).mapToDouble(b -> b/n).toArray();
double h1 = MathEx.entropy(p1);
double h2 = MathEx.entropy(p2);
double I = MutualInformation.of(contingency.n, p1, p2, contingency.table);
return I / Math.max(h1, h2);
}
/**
* Calculates the normalized mutual information of 2 * I(y1, y2) / (H(y1) + H(y2)).
* @param y1 the clustering labels.
* @param y2 the alternative cluster labels.
* @return the metric.
*/
public static double sum(int[] y1, int[] y2) {
ContingencyTable contingency = new ContingencyTable(y1, y2);
double n = contingency.n;
double[] p1 = Arrays.stream(contingency.a).mapToDouble(a -> a/n).toArray();
double[] p2 = Arrays.stream(contingency.b).mapToDouble(b -> b/n).toArray();
double h1 = MathEx.entropy(p1);
double h2 = MathEx.entropy(p2);
double I = MutualInformation.of(contingency.n, p1, p2, contingency.table);
return 2 * I / (h1 + h2);
}
/**
* Calculates the normalized mutual information of I(y1, y2) / sqrt(H(y1) * H(y2)).
* @param y1 the clustering labels.
* @param y2 the alternative cluster labels.
* @return the metric.
*/
public static double sqrt(int[] y1, int[] y2) {
ContingencyTable contingency = new ContingencyTable(y1, y2);
double n = contingency.n;
double[] p1 = Arrays.stream(contingency.a).mapToDouble(a -> a/n).toArray();
double[] p2 = Arrays.stream(contingency.b).mapToDouble(b -> b/n).toArray();
double h1 = MathEx.entropy(p1);
double h2 = MathEx.entropy(p2);
double I = MutualInformation.of(contingency.n, p1, p2, contingency.table);
return I / Math.sqrt(h1 * h2);
}
/**
* Calculates the normalized mutual information of I(y1, y2) / min(H(y1), H(y2)).
* @param y1 the clustering labels.
* @param y2 the alternative cluster labels.
* @return the metric.
*/
public static double min(int[] y1, int[] y2) {
ContingencyTable contingency = new ContingencyTable(y1, y2);
double n = contingency.n;
double[] p1 = Arrays.stream(contingency.a).mapToDouble(a -> a/n).toArray();
double[] p2 = Arrays.stream(contingency.b).mapToDouble(b -> b/n).toArray();
double h1 = MathEx.entropy(p1);
double h2 = MathEx.entropy(p2);
double I = MutualInformation.of(contingency.n, p1, p2, contingency.table);
return I / Math.min(h1, h2);
}
@Override
public String toString() {
return String.format("NormalizedMutualInformation(%s)", method);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy