All Downloads are FREE. Search and download functionalities are using the official Maven repository.

smile.validation.metric.Precision Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
 *
 * Smile is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Smile is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Smile.  If not, see .
 */

package smile.validation.metric;

import java.io.Serial;
import smile.math.MathEx;

/**
 * The precision or positive predictive value (PPV) is ratio of true positives
 * to combined true and false positives, which is different from sensitivity.
 * 
 *     PPV = TP / (TP + FP)
 * 
* * @author Haifeng Li */ public class Precision implements ClassificationMetric { @Serial private static final long serialVersionUID = 2L; /** Default instance. */ public static final Precision instance = new Precision(); /** The aggregating strategy for multi-classes. */ private final Averaging strategy; /** * Constructor. */ public Precision() { this(null); } /** * Constructor. * @param strategy The aggregating strategy for multi-classes. */ public Precision(Averaging strategy) { this.strategy = strategy; } @Override public double score(int[] truth, int[] prediction) { return of(truth, prediction, strategy); } @Override public String toString() { return strategy == null ? "Precision" : strategy + "-Precision"; } /** * Calculates the precision of binary classification. * @param truth the ground truth. * @param prediction the prediction. * @return the metric. */ public static double of(int[] truth, int[] prediction) { for (int t : truth) { if (t != 0 && t != 1) { throw new IllegalArgumentException("Precision can only be applied to binary classification: " + t); } } for (int p : prediction) { if (p != 0 && p != 1) { throw new IllegalArgumentException("Precision can only be applied to binary classification: " + p); } } return of(truth, prediction, null); } /** * Calculates the precision. * @param truth the ground truth. * @param prediction the prediction. * @param strategy The aggregating strategy for multi-classes. * @return the metric. */ public static double of(int[] truth, int[] prediction, Averaging strategy) { if (truth.length != prediction.length) { throw new IllegalArgumentException(String.format("The vector sizes don't match: %d != %d.", truth.length, prediction.length)); } int numClasses = Math.max(MathEx.max(truth), MathEx.max(prediction)) + 1; if (numClasses > 2 && strategy == null) { throw new IllegalArgumentException("Averaging strategy is null for multi-class"); } int length = strategy == Averaging.Macro || strategy == Averaging.Weighted ? numClasses : 1; int[] tp = new int[length]; int[] fp = new int[length]; int[] size = new int[numClasses]; int n = truth.length; for (var target : truth) { ++size[target]; } if (strategy == null) { for (int i = 0; i < n; i++) { if (prediction[i] == 1) { if (truth[i] == 1) { tp[0]++; } else { fp[0]++; } } } } else if (strategy == Averaging.Micro) { for (int i = 0; i < n; i++) { tp[0] += truth[i] == prediction[i] ? 1 : 0; fp[0] += truth[i] != prediction[i] ? 1 : 0; } } else { for (int i = 0; i < n; i++) { tp[truth[i]] += truth[i] == prediction[i] ? 1 : 0; fp[prediction[i]] += truth[i] != prediction[i] ? 1 : 0; } } double[] precision = new double[tp.length]; for (int i = 0; i < tp.length; i++) { precision[i] = (double) tp[i] / (tp[i] + fp[i]); } if (strategy == Averaging.Macro) { return MathEx.mean(precision); } else if (strategy == Averaging.Weighted) { double weighted = 0.0; for (int i = 0; i < numClasses; i++) { weighted += precision[i] * size[i]; } return weighted / n; } return precision[0]; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy