smile.vq.NeuralMap Maven / Gradle / Ivy
/*
* Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Smile. If not, see .
*/
package smile.vq;
import java.io.Serial;
import java.util.*;
import smile.sort.HeapSelect;
import smile.vq.hebb.Neuron;
import smile.vq.hebb.Edge;
/**
* NeuralMap is an efficient competitive learning algorithm inspired by growing
* neural gas and BIRCH. Like growing neural gas, NeuralMap has the ability to
* add and delete neurons with competitive Hebbian learning. Edges exist between
* neurons close to each other. Such edges are intended placeholders for
* localized data distribution. Such edges also help to locate distinct clusters
* (those clusters are not connected by edges).
*
* @see NeuralGas
* @see GrowingNeuralGas
* @see BIRCH
*
* @author Haifeng Li
*/
public class NeuralMap implements VectorQuantizer {
@Serial
private static final long serialVersionUID = 2L;
/**
* The number of signals processed so far.
*/
private int t = 0;
/**
* The distance radius to activate a neuron for a given signal.
*/
private final double r;
/**
* The maximum age of edges.
*/
private final int edgeLifetime;
/**
* The learning rate to update nearest neuron.
*/
private final double epsBest;
/**
* The learning to update neighbors of nearest neuron.
*/
private final double epsNeighbor;
/**
* Decrease the freshness of all neurons by multiply them with beta.
*/
private final double beta;
/**
* Neurons in the neural network.
*/
private final ArrayList neurons = new ArrayList<>();
/**
* The workspace to find nearest neighbors.
*/
private final Neuron[] top2 = new Neuron[2];
/**
* Constructor.
* @param r the distance threshold to activate the nearest neuron of a signal.
* @param epsBest the learning rate to update activated neuron.
* @param epsNeighbor the learning rate to update neighbors of activated neuron.
* @param edgeLifetime the maximum age of edges.
* @param beta decrease the freshness of all neurons by multiply them with beta.
*/
public NeuralMap(double r, double epsBest, double epsNeighbor, int edgeLifetime, double beta) {
this.r = r;
this.epsBest = epsBest;
this.epsNeighbor = epsNeighbor;
this.edgeLifetime = edgeLifetime;
this.beta = beta;
}
@Override
public void update(double[] x) {
t++;
if (neurons.size() < 2) {
neurons.add(new Neuron(x.clone()));
return;
}
// Find the nearest (s1) and second nearest (s2) neuron to x.
neurons.stream().parallel().forEach(neuron -> neuron.distance(x));
Arrays.fill(top2, null);
HeapSelect heap = new HeapSelect<>(top2);
for (Neuron neuron : neurons) {
heap.add(neuron);
}
Neuron s1 = top2[1];
Neuron s2 = top2[0];
if (s1.distance > r) {
Neuron neuron = new Neuron(x.clone());
neurons.add(neuron);
return;
}
if (s2.distance > r) {
Neuron neuron = new Neuron(x.clone());
neurons.add(neuron);
s1.addEdge(neuron);
neuron.addEdge(s1);
return;
}
// update s1
s1.update(x, epsBest);
// Increase the freshness of neuron.
s1.counter += 1;
// Increase the edge of all edges emanating from s1.
s1.age();
boolean addEdge = true;
for (Edge edge : s1.edges) {
// Update s1's direct topological neighbors towards x.
Neuron neighbor = edge.neighbor;
neighbor.update(x, epsNeighbor);
// Set the age to zero if s1 and s2 are already connected.
if (neighbor == s2) {
edge.age = 0;
s2.setEdgeAge(s1, 0);
addEdge = false;
}
}
// Connect s1 and s2 if they are not neighbor yet.
if (addEdge) {
s1.addEdge(s2);
s2.addEdge(s1);
s2.update(x, epsNeighbor);
}
// Remove edges with an age larger than the threshold
for (Iterator iter = s1.edges.iterator(); iter.hasNext();) {
Edge edge = iter.next();
if (edge.age > edgeLifetime) {
iter.remove();
Neuron neighbor = edge.neighbor;
neighbor.removeEdge(s1);
// Remove a neuron if it has no emanating edges
if (neighbor.edges.isEmpty()) {
neurons.removeIf(neuron -> neuron == edge.neighbor);
}
}
}
// Decrease all error variables.
for (Neuron neuron : neurons) {
neuron.counter *= beta;
}
}
/**
* Returns the neurons.
* @return the neurons.
*/
public Neuron[] neurons() {
return neurons.toArray(new Neuron[0]);
}
/**
* Removes staled neurons and the edges beyond lifetime.
* Neurons without emanating edges will be removed too.
* @param eps the freshness threshold of neurons. It should
* be a small value (e.g. 1E-7).
*/
public void clear(double eps) {
ArrayList noise = new ArrayList<>();
for (Neuron neuron : neurons) {
if (neuron.counter < eps) {
for (Edge edge : neuron.edges) {
edge.neighbor.removeEdge(neuron);
}
neuron.edges.clear();
} else {
for (Iterator iter = neuron.edges.iterator(); iter.hasNext(); ) {
Edge edge = iter.next();
if (edge.age > edgeLifetime) {
edge.neighbor.removeEdge(neuron);
iter.remove();
}
}
}
if (neuron.edges.isEmpty()) {
noise.add(neuron);
}
}
neurons.removeAll(noise);
}
@Override
public double[] quantize(double[] x) {
neurons.stream().parallel().forEach(node -> node.distance(x));
Neuron bmu = neurons.getFirst();
for (Neuron neuron : neurons) {
if (neuron.distance < bmu.distance) {
bmu = neuron;
}
}
return bmu.w;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy