smile.vq.hebb.Neuron Maven / Gradle / Ivy
The newest version!
/*
* Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Smile. If not, see .
*/
package smile.vq.hebb;
import java.io.Serial;
import java.io.Serializable;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import smile.math.MathEx;
/**
* The neuron vertex in the growing neural gas network.
*
* @author Haifeng Li
*/
public class Neuron implements Comparable, Serializable {
@Serial
private static final long serialVersionUID = 2L;
/**
* The reference vector.
*/
public final double[] w;
/**
* The direct connected neighbors.
*/
public final List edges;
/**
* The distance between the neuron and an input signal.
*/
public transient double distance = Double.MAX_VALUE;
/**
* The local counter variable (e.g. the accumulated error, freshness, etc.)
*/
public double counter;
/**
* Constructor.
* @param w the reference vector.
*/
public Neuron(double[] w) {
this(w, 0.0);
}
/**
* Constructor.
* @param w the reference vector.
* @param counter the local counter.
*/
public Neuron(double[] w, double counter) {
this.w = w;
this.counter = counter;
this.edges = new LinkedList<>();
}
/**
* Updates the reference vector by w += eps * (x - w).
* @param x a signal.
* @param eps the learning rate.
*/
public void update(double[] x, double eps) {
for (int i = 0; i < x.length; i++) {
w[i] += eps * (x[i] - w[i]);
}
}
/**
* Adds an edge.
* @param neighbor the neighbor neuron.
*/
public void addEdge(Neuron neighbor) {
addEdge(neighbor, 0);
}
/**
* Adds an edge.
* @param neighbor the neighbor neuron.
* @param age the age of edge.
*/
public void addEdge(Neuron neighbor, int age) {
edges.add(new Edge(neighbor, age));
}
/**
* Removes an edge.
* @param neighbor the neighbor neuron of the edge.
*/
public void removeEdge(Neuron neighbor) {
for (Iterator iter = edges.iterator(); iter.hasNext();) {
Edge edge = iter.next();
if (edge.neighbor == neighbor) {
iter.remove();
return;
}
}
}
/**
* Sets the age of edge.
* @param neighbor the neighbor neuron of the edge.
* @param age the age of edge.
*/
public void setEdgeAge(Neuron neighbor, int age) {
for (Edge edge : edges) {
if (edge.neighbor == neighbor) {
edge.age = age;
return;
}
}
}
/** Increments the age of all edges emanating from the neuron. */
public void age() {
for (Edge edge : edges) {
edge.age++;
}
}
/**
* Computes the distance between the neuron and a signal.
* @param x the signal.
*/
public void distance(double[] x) {
distance = MathEx.distance(w, x);
}
@Override
public int compareTo(Neuron o) {
return Double.compare(distance, o.distance);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy