
smile.clustering.SpectralClustering Maven / Gradle / Ivy
The newest version!
/*
* Copyright (c) 2010-2025 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Smile. If not, see .
*/
package smile.clustering;
import java.util.Arrays;
import java.util.Properties;
import java.util.stream.IntStream;
import smile.data.SparseDataset;
import smile.math.MathEx;
import smile.math.blas.Transpose;
import smile.math.blas.UPLO;
import smile.math.matrix.ARPACK;
import smile.math.matrix.IMatrix;
import smile.math.matrix.Matrix;
import smile.util.AlgoStatus;
import smile.util.IterativeAlgorithmController;
import smile.util.SparseArray;
import smile.util.SparseIntArray;
/**
* Spectral Clustering. Given a set of data points, the similarity matrix may
* be defined as a matrix S where Sij represents a measure of the
* similarity between points. Spectral clustering techniques make use of the
* spectrum of the similarity matrix of the data to perform dimensionality
* reduction for clustering in fewer dimensions. Then the clustering will
* be performed in the dimension-reduce space, in which clusters of non-convex
* shape may become tight. There are some intriguing similarities between
* spectral clustering methods and kernel PCA, which has been empirically
* observed to perform clustering.
*
* References
*
* - A.Y. Ng, M.I. Jordan, and Y. Weiss. On Spectral Clustering: Analysis and an algorithm. NIPS, 2001.
* - Marina Maila and Jianbo Shi. Learning segmentation by random walks. NIPS, 2000.
* - Deepak Verma and Marina Meila. A Comparison of Spectral Clustering Algorithms. 2003.
* - Kai Zhang, Nathan R. Zemke, Ethan J. Armand and Bing Ren. A fast, scalable and versatile tool for analysis of single-cell omics data. 2024.
*
*
* @author Haifeng Li
*/
public class SpectralClustering {
private static final org.slf4j.Logger logger = org.slf4j.LoggerFactory.getLogger(SpectralClustering.class);
/** Constructor. */
private SpectralClustering() {
}
/**
* Spectral clustering hyperparameters.
* @param k the number of clusters.
* @param l the number of random samples for Nystrom approximation.
* Uses 0 to disable approximation.
* @param sigma the smooth/width parameter of Gaussian kernel, which is
* a somewhat sensitive parameter. To search for the best
* setting, one may pick the value that gives the tightest
* clusters (smallest distortion) in feature space.
* @param maxIter the maximum number of iterations.
* @param tol the tolerance of convergence test.
* @param controller the optional training controller.
*/
public record Options(int k, int l, double sigma, int maxIter, double tol,
IterativeAlgorithmController controller) {
/** Constructor. */
public Options {
if (k < 2) {
throw new IllegalArgumentException("Invalid number of clusters: " + k);
}
if (l < k && l > 0) {
throw new IllegalArgumentException("Invalid number of random samples: " + l);
}
if (sigma <= 0.0) {
throw new IllegalArgumentException("Invalid standard deviation of Gaussian kernel: " + sigma);
}
if (maxIter <= 0) {
throw new IllegalArgumentException("Invalid maximum number of iterations: " + maxIter);
}
if (tol < 0) {
throw new IllegalArgumentException("Invalid tolerance: " + tol);
}
}
/**
* Constructor.
* @param k the number of clusters.
* @param sigma the smooth/width parameter of Gaussian kernel.
* @param maxIter the maximum number of iterations.
*/
public Options(int k, double sigma, int maxIter) {
this(k, 0, sigma, maxIter);
}
/**
* Constructor.
* @param k the number of clusters.
* @param l the number of random samples for Nystrom approximation.
* Uses 0 to disable approximation.
* @param sigma the smooth/width parameter of Gaussian kernel.
* @param maxIter the maximum number of iterations.
*/
public Options(int k, int l, double sigma, int maxIter) {
this(k, l, sigma, maxIter, 1E-4, null);
}
/**
* Returns the persistent set of hyperparameters.
* @return the persistent set.
*/
public Properties toProperties() {
Properties props = new Properties();
props.setProperty("smile.spectral_clustering.k", Integer.toString(k));
props.setProperty("smile.spectral_clustering.l", Integer.toString(l));
props.setProperty("smile.spectral_clustering.sigma", Double.toString(sigma));
props.setProperty("smile.spectral_clustering.iterations", Integer.toString(maxIter));
props.setProperty("smile.spectral_clustering.tolerance", Double.toString(tol));
return props;
}
/**
* Returns the options from properties.
*
* @param props the hyperparameters.
* @return the options.
*/
public static Options of(Properties props) {
int k = Integer.parseInt(props.getProperty("smile.spectral_clustering.k", "2"));
int l = Integer.parseInt(props.getProperty("smile.spectral_clustering.l", "0"));
double sigma = Double.parseDouble(props.getProperty("smile.spectral_clustering.sigma", "1.0"));
int maxIter = Integer.parseInt(props.getProperty("smile.spectral_clustering.iterations", "100"));
double tol = Double.parseDouble(props.getProperty("smile.spectral_clustering.tolerance", "1E-4"));
return new Options(k, l, sigma, maxIter, tol, null);
}
}
/**
* Spectral clustering the nonnegative count data with cosine similarity.
* @param data the nonnegative count matrix.
* @param p the number of features.
* @param options the hyperparameters.
* @return the model.
*/
public static CentroidClustering fit(SparseIntArray[] data, int p, Clustering.Options options) {
double[][] Y = embed(data, p, options.k());
return KMeans.fit(Y, options);
}
/**
* Spectral clustering the data.
* @param data the input data of which each row is an observation.
* @param options the hyperparameters.
* @return the model.
*/
public static CentroidClustering fit(double[][] data, Options options) {
if (options.l >= options.k) {
return nystrom(data, options);
} else {
double[][] Y = embed(data, options.k, options.sigma);
return KMeans.fit(Y, new Clustering.Options(options.k, options.maxIter, options.tol, options.controller));
}
}
/**
* Spectral clustering with Nystrom approximation.
* @param data the input data of which each row is an observation.
* @param options the hyperparameters.
* @return the model.
*/
public static CentroidClustering nystrom(double[][] data, Options options) {
int n = data.length;
int k = options.k;
int l = options.l;
double sigma = options.sigma;
double gamma = -0.5 / (sigma * sigma);
if (l < k || l >= n) {
throw new IllegalArgumentException("Invalid number of random samples: " + l);
}
int[] index = MathEx.permutate(n);
double[][] x = new double[n][];
for (int i = 0; i < n; i++) {
x[i] = data[index[i]];
}
Matrix C = new Matrix(n, l);
double[] D = new double[n];
IntStream.range(0, n).parallel().forEach(i -> {
for (int j = 0; j < n; j++) {
if (i != j) {
double w = Math.exp(gamma * MathEx.squaredDistance(x[i], x[j]));
D[i] += w;
if (j < l) {
C.set(i, j, w);
}
}
}
});
for (int i = 0; i < n; i++) {
if (D[i] < 1E-4) {
logger.error("Small D[{}] = {}. The data may contain outliers.", i, D[i]);
}
D[i] = 1.0 / Math.sqrt(D[i]);
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < l; j++) {
C.set(i, j, D[i] * C.get(i, j) * D[j]);
}
}
Matrix W = C.submatrix(0, 0, l-1, l-1);
W.uplo(UPLO.LOWER);
Matrix.EVD eigen = ARPACK.syev(W, ARPACK.SymmOption.LA, k);
double[] e = eigen.wr;
double scale = Math.sqrt((double)l / n);
for (int i = 0; i < k; i++) {
if (e[i] <= 1E-8) {
throw new IllegalStateException("Non-positive eigen value: " + e[i]);
}
e[i] = scale / e[i];
}
Matrix U = eigen.Vr;
for (int i = 0; i < l; i++) {
for (int j = 0; j < k; j++) {
U.mul(i, j, e[j]);
}
}
double[][] Y = C.mm(U).toArray();
for (int i = 0; i < n; i++) {
MathEx.unitize2(Y[i]);
}
double[][] features = new double[n][];
for (int i = 0; i < n; i++) {
features[index[i]] = Y[i];
}
return KMeans.fit(features, new Clustering.Options(k, options.maxIter, options.tol, options.controller));
}
/**
* Returns the embedding for spectral clustering.
* @param W the adjacency matrix of graph, which will be modified.
* @param d the dimension of feature space.
* @return the embedding.
*/
public static double[][] embed(Matrix W, int d) {
int n = W.nrow();
double[] D = W.colSums();
for (int i = 0; i < n; i++) {
if (D[i] == 0.0) {
throw new IllegalArgumentException("Isolated vertex: " + i);
}
D[i] = 1.0 / Math.sqrt(D[i]);
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < i; j++) {
double w = D[i] * W.get(i, j) * D[j];
W.set(i, j, w);
W.set(j, i, w);
}
}
W.uplo(UPLO.LOWER);
Matrix.EVD eigen = ARPACK.syev(W, ARPACK.SymmOption.LA, d);
double[][] Y = eigen.Vr.toArray();
for (int i = 0; i < n; i++) {
MathEx.unitize2(Y[i]);
}
return Y;
}
/**
* Returns the embedding for spectral clustering.
* @param data the input data of which each row is an observation.
* @param d the dimension of feature space.
* @param sigma the smooth/width parameter of Gaussian kernel.
* @return the embedding.
*/
public static double[][] embed(double[][] data, int d, double sigma) {
int n = data.length;
double gamma = -0.5 / (sigma * sigma);
Matrix W = new Matrix(n, n);
for (int i = 0; i < n; i++) {
for (int j = 0; j < i; j++) {
double w = Math.exp(gamma * MathEx.squaredDistance(data[i], data[j]));
W.set(i, j, w);
W.set(j, i, w);
}
}
return embed(W, d);
}
/**
* Returns the embedding for the nonnegative count data with cosine similarity.
* @param data the nonnegative count matrix.
* @param p the number of features.
* @param d the dimension of feature space.
* @return the embedding.
*/
public static double[][] embed(SparseIntArray[] data, int p, int d) {
int n = data.length;
double[] idf = new double[p];
for (int i = 0; i < n; i++) {
data[i].forEach((j, count) -> idf[j] += count > 0 ? 1 : 0);
}
for (int j = 0; j < p; j++) {
idf[j] = Math.log(n / (1 + idf[j]));
}
SparseArray[] X = new SparseArray[n];
IntStream.range(0, n).parallel().forEach( i -> {
double[] x = new double[p];
data[i].forEach((j, count) -> x[j] = count / idf[j]);
MathEx.normalize(x);
SparseArray Xi = new SparseArray(data[i].size());
for (int j = 0; j < p; j++) {
if (x[j] > 0) {
Xi.set(j, x[j]);
}
}
X[i] = Xi;
});
double[] D = new double[n];
IntStream.range(0, n).parallel().forEach( i -> {
double Di = -1;
for (int j = 0; j < n; j++) {
Di += MathEx.dot(X[i], X[j]);
}
D[i] = Di;
double di = Math.sqrt(Di);
X[i].update((j, xj) -> xj / di);
});
var W = new CountMatrix(SparseDataset.of(X, p).toMatrix(), D);
Matrix.EVD eigen = ARPACK.syev(W, ARPACK.SymmOption.LA, d);
double[][] Y = eigen.Vr.toArray();
for (int i = 0; i < n; i++) {
MathEx.unitize2(Y[i]);
}
return Y;
}
/**
* Normalized feature count matrix.
*/
static class CountMatrix extends IMatrix {
/** The design matrix. */
final IMatrix X;
final double[] D;
final double[] x;
final double[] ax;
final double[] y;
/**
* Constructor.
*/
CountMatrix(IMatrix X, double[] D) {
this.X = X;
this.D = D;
int n = X.nrow();
int p = X.ncol();
x = new double[n];
y = new double[n];
ax = new double[p];
}
@Override
public int nrow() {
return X.nrow();
}
@Override
public int ncol() {
return X.nrow();
}
@Override
public long size() {
return X.size();
}
@Override
public void mv(double[] x, double[] y) {
X.tv(x, ax);
X.mv(ax, y);
for (int i = 0; i < y.length; i++) {
y[i] -= x[i] / D[i];
}
}
@Override
public void tv(double[] x, double[] y) {
mv(x, y);
}
@Override
public void mv(Transpose trans, double alpha, double[] x, double beta, double[] y) {
throw new UnsupportedOperationException();
}
@Override
public void mv(double[] work, int inputOffset, int outputOffset) {
System.arraycopy(work, inputOffset, x, 0, x.length);
X.tv(work, ax);
X.mv(ax, y);
for (int i = 0; i < y.length; i++) {
y[i] -= x[i] / D[i];
}
System.arraycopy(y, 0, work, outputOffset, y.length);
}
@Override
public void tv(double[] work, int inputOffset, int outputOffset) {
throw new UnsupportedOperationException();
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy