
smile.validation.ClassificationValidations Maven / Gradle / Ivy
The newest version!
/*
* Copyright (c) 2010-2025 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Smile. If not, see .
*/
package smile.validation;
import java.io.Serial;
import java.io.Serializable;
import java.util.List;
import smile.math.MathEx;
/**
* Classification model validation results.
*
* @param rounds The multiple round validations.
* @param avg The average of metrics.
* @param std The standard deviation of metrics.
* @param The model type.
*
* @author Haifeng Li
*/
public record ClassificationValidations(List> rounds,
ClassificationMetrics avg,
ClassificationMetrics std) implements Serializable {
@Serial
private static final long serialVersionUID = 3L;
/**
* Factory method.
* @param rounds the validation metrics of multiple rounds.
* @param the model type.
* @return the validation object.
*/
public static ClassificationValidations of(List> rounds) {
int k = rounds.size();
double[] fitTime = new double[k];
double[] scoreTime = new double[k];
int[] size = new int[k];
int[] error = new int[k];
double[] accuracy = new double[k];
double[] sensitivity = new double[k];
double[] specificity = new double[k];
double[] precision = new double[k];
double[] f1 = new double[k];
double[] mcc = new double[k];
double[] auc = new double[k];
double[] logloss = new double[k];
double[] crossentropy = new double[k];
for (int i = 0; i < k; i++) {
ClassificationMetrics metrics = rounds.get(i).metrics();
fitTime[i] = metrics.fitTime();
scoreTime[i] = metrics.scoreTime();
size[i] = metrics.size();
error[i] = metrics.error();
accuracy[i] = metrics.accuracy();
sensitivity[i] = metrics.sensitivity();
specificity[i] = metrics.specificity();
precision[i] = metrics.precision();
f1[i] = metrics.f1();
mcc[i] = metrics.mcc();
auc[i] = metrics.auc();
logloss[i] = metrics.logloss();
crossentropy[i] = metrics.crossEntropy();
}
ClassificationMetrics avg = new ClassificationMetrics(
MathEx.mean(fitTime),
MathEx.mean(scoreTime),
(int) Math.round(MathEx.mean(size)),
(int) Math.round(MathEx.mean(error)),
MathEx.mean(accuracy),
MathEx.mean(sensitivity),
MathEx.mean(specificity),
MathEx.mean(precision),
MathEx.mean(f1),
MathEx.mean(mcc),
MathEx.mean(auc),
MathEx.mean(logloss),
MathEx.mean(crossentropy)
);
ClassificationMetrics std = new ClassificationMetrics(
MathEx.stdev(fitTime),
MathEx.stdev(scoreTime),
(int) Math.round(MathEx.stdev(size)),
(int) Math.round(MathEx.stdev(error)),
MathEx.stdev(accuracy),
MathEx.stdev(sensitivity),
MathEx.stdev(specificity),
MathEx.stdev(precision),
MathEx.stdev(f1),
MathEx.stdev(mcc),
MathEx.stdev(auc),
MathEx.stdev(logloss),
MathEx.stdev(crossentropy)
);
return new ClassificationValidations<>(rounds, avg, std);
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder("{\n");
sb.append(String.format(" fit time: %.3f ms ± %.3f,\n", avg.fitTime(), std.fitTime()));
sb.append(String.format(" score time: %.3f ms ± %.3f,\n", avg.scoreTime(), std.scoreTime()));
sb.append(String.format(" validation data size: %d ± %d,\n", avg.size(), std.size()));
sb.append(String.format(" error: %d ± %d,\n", avg.error(), std.error()));
sb.append(String.format(" accuracy: %.2f%% ± %.2f", 100 * avg.accuracy(), 100 * std.accuracy()));
if (!Double.isNaN(avg.sensitivity())) sb.append(String.format(",\n sensitivity: %.2f%% ± %.2f", 100 * avg.sensitivity(), 100 * std.sensitivity()));
if (!Double.isNaN(avg.specificity())) sb.append(String.format(",\n specificity: %.2f%% ± %.2f", 100 * avg.specificity(), 100 * std.specificity()));
if (!Double.isNaN(avg.precision())) sb.append(String.format(",\n precision: %.2f%% ± %.2f", 100 * avg.precision(), 100 * std.precision()));
if (!Double.isNaN(avg.f1())) sb.append(String.format(",\n F1 score: %.2f%% ± %.2f", 100 * avg.f1(), 100 * std.f1()));
if (!Double.isNaN(avg.mcc())) sb.append(String.format(",\n MCC: %.2f%% ± %.2f", 100 * avg.mcc(), 100 * std.mcc()));
if (!Double.isNaN(avg.auc())) sb.append(String.format(",\n AUC: %.2f%% ± %.2f", 100 * avg.auc(), 100 * std.auc()));
if (!Double.isNaN(avg.logloss())) sb.append(String.format(",\n log loss: %.4f ± %.4f", avg.logloss(), std.logloss()));
else if (!Double.isNaN(avg.crossEntropy())) sb.append(String.format(",\n cross entropy: %.4f ± %.4f", avg.crossEntropy(), std.crossEntropy()));
sb.append("\n}");
return sb.toString();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy