smile.deep.Loss Maven / Gradle / Ivy
The newest version!
/*
* Copyright (c) 2010-2024 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Smile. If not, see .
*/
package smile.deep;
import java.util.function.BiFunction;
import smile.deep.tensor.Tensor;
import org.bytedeco.pytorch.global.torch;
/**
* Loss functions.
*
* @author Haifeng Li
*/
public interface Loss extends BiFunction {
/**
* Mean Absolute Error (L1) Loss Function.
* @return the loss functor.
*/
static Loss l1() {
return (input, target) -> new Tensor(torch.l1_loss(input.asTorch(), target.asTorch()));
}
/**
* Mean Squared Error (L2) Loss Function.
* @return the loss functor.
*/
static Loss mse() {
return (input, target) -> new Tensor(torch.mse_loss(input.asTorch(), target.asTorch()));
}
/**
* Negative Log-Likelihood Loss Function.
* @return the loss functor.
*/
static Loss nll() {
return (input, target) -> new Tensor(torch.nll_loss(input.asTorch(), target.asTorch()));
}
/**
* Cross Entropy Loss Function.
* @return the loss functor.
*/
static Loss crossEntropy() {
return (input, target) -> new Tensor(torch.cross_entropy_loss(input.asTorch(), target.asTorch()));
}
/**
* Hinge Embedding Loss Function.
* @return the loss functor.
*/
static Loss hingeEmbedding() {
return (input, target) -> new Tensor(torch.hinge_embedding_loss(input.asTorch(), target.asTorch()));
}
/**
* Kullback-Leibler Divergence Loss Function.
* @return the loss functor.
*/
static Loss kl() {
return (input, target) -> new Tensor(torch.kl_div(input.asTorch(), target.asTorch()));
}
/**
* Margin Ranking Loss Function.
* @param input1 the first input.
* @param input2 the second input.
* @param target the target/truth.
* @return the loss.
*/
static Tensor marginRanking(Tensor input1, Tensor input2, Tensor target) {
return new Tensor(torch.margin_ranking_loss(input1.asTorch(), input2.asTorch(), target.asTorch()));
}
/**
* Triplet Margin Ranking Loss Function.
* @param anchor the first input.
* @param positive the second input.
* @param negative the third input.
* @return the loss.
*/
static Tensor tripleMarginRanking(Tensor anchor, Tensor positive, Tensor negative) {
return new Tensor(torch.triplet_margin_loss(anchor.asTorch(), positive.asTorch(), negative.asTorch()));
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy