smile.deep.layer.LayerBlock Maven / Gradle / Ivy
The newest version!
/*
* Copyright (c) 2010-2024 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Smile. If not, see .
*/
package smile.deep.layer;
import org.bytedeco.pytorch.DeviceOptional;
import org.bytedeco.pytorch.InputArchive;
import org.bytedeco.pytorch.Module;
import org.bytedeco.pytorch.OutputArchive;
import smile.deep.tensor.Device;
import smile.deep.tensor.ScalarType;
/**
* A block is combinations of one or more layers. Blocks form the basis of
* more complex network designs. LayerBlock allows treating the whole
* container as a single layer, such that performing a transformation on
* the LayerBlock applies to each of the layers it contains (which are each
* a registered submodule of the block).
*
* @author Haifeng Li
*/
public abstract class LayerBlock implements Layer {
/** The neural network module. */
protected final Module module;
/** The compute device. */
protected Device device;
/** The data type. */
protected ScalarType dtype;
/**
* Constructor.
*/
public LayerBlock() {
this(new Module());
}
/**
* Constructor.
* @param name the module name.
*/
public LayerBlock(String name) {
this(new Module(name));
}
/**
* Constructor.
* @param module a module.
*/
public LayerBlock(Module module) {
this.module = module;
}
@Override
public Module asTorch() {
return module;
}
@Override
public String toString() {
return toString(asTorch(), new StringBuilder(), 0);
}
/**
* Returns the string representation of a module.
* @param module the module.
* @param sb string builder.
* @param indent indent space.
* @return the string representation.
*/
private String toString(Module module, StringBuilder sb, int indent) {
sb.append(module.name().getString());
var children = module.named_children();
if (children.size() > 0) {
sb.append('(');
sb.append(System.lineSeparator());
var keys = children.keys();
for (int i = 0; i < keys.size(); i++) {
var key = keys.get(i);
var child = children.get(key);
sb.append(" ".repeat(indent + 2));
sb.append(String.format("(%s): ", key.getString()));
toString(child, sb, indent + 2);
sb.append(System.lineSeparator());
}
sb.append(" ".repeat(indent));
sb.append(')');
}
return sb.toString();
}
/**
* Adds a sub-layer.
* @param name the name of sub-layer.
* @param layer the sub-layer.
* @return this object.
*/
public LayerBlock add(String name, Layer layer) {
return add(name, layer.asTorch());
}
/**
* Adds a sub-layer.
* @param name the name of sub-layer.
* @param layer the sub-layer.
* @return this object.
*/
public LayerBlock add(String name, Module layer) {
module.register_module(name, layer);
return this;
}
/**
* Returns true if the layer block is in training mode.
* @return true if the layer block is in training mode.
*/
public boolean isTraining() {
return module.is_training();
}
/**
* Sets the layer block in the training mode.
*/
public void train() {
module.train(true);
}
/**
* Sets the layer block in the evaluation/inference mode.
*/
public void eval() {
module.eval();
}
/**
* Returns the compute device of module.
*/
public Device device() {
return device;
}
/**
* Returns the compute device of module.
*/
public ScalarType dtype() {
return dtype;
}
@Override
public LayerBlock to(Device device) {
module.to(device.asTorch(), true);
this.device = device;
return this;
}
@Override
public LayerBlock to(Device device, ScalarType dtype) {
module.to(device.asTorch(), dtype.asTorch(), true);
this.device = device;
this.dtype = dtype;
return this;
}
/**
* Loads a checkpoint.
* @param path the checkpoint file path.
*/
public void load(String path) {
InputArchive archive = new InputArchive();
var deviceOptional = new DeviceOptional();
if (device != null) deviceOptional.put(device.asTorch());
archive.load_from(path, deviceOptional);
module.load(archive);
archive.close();
deviceOptional.close();
if (device != null) device.emptyCache();
}
/**
* Serialize the layer block as a checkpoint.
* @param path the checkpoint file path.
*/
public void save(String path) {
OutputArchive archive = new OutputArchive();
module.save(archive);
archive.save_to(path);
archive.close();
}
/**
* Creates a sequential layer block.
* @param layers the neural network layers.
* @return the sequential layer block.
*/
static SequentialBlock sequential(Layer... layers) {
return new SequentialBlock(layers);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy