smile.deep.layer.LinearLayer Maven / Gradle / Ivy
The newest version!
/*
* Copyright (c) 2010-2024 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Smile. If not, see .
*/
package smile.deep.layer;
import org.bytedeco.pytorch.LinearImpl;
import org.bytedeco.pytorch.LinearOptions;
import org.bytedeco.pytorch.Module;
import smile.deep.tensor.Tensor;
/**
* A fully connected linear layer.
*
* @author Haifeng Li
*/
public class LinearLayer implements Layer {
private final LinearImpl module;
/**
* Constructor.
* @param in the number of input features.
* @param out the number of output features.
*/
public LinearLayer(int in, int out) {
this(in, out, true);
}
/**
* Constructor.
* @param in the number of input features.
* @param out the number of output features.
* @param bias If false, the layer will not learn an additive bias.
*/
public LinearLayer(int in, int out, boolean bias) {
var options = new LinearOptions(in, out);
options.bias().put(bias);
this.module = new LinearImpl(options);
}
@Override
public Module asTorch() {
return module;
}
@Override
public Tensor forward(Tensor input) {
return new Tensor(module.forward(input.asTorch()));
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy