smile.vision.layer.MBConv Maven / Gradle / Ivy
/*
* Copyright (c) 2010-2024 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Smile. If not, see .
*/
package smile.vision.layer;
import java.util.function.IntFunction;
import smile.deep.activation.SiLU;
import smile.deep.activation.Sigmoid;
import smile.deep.layer.Layer;
import smile.deep.layer.LayerBlock;
import smile.deep.layer.SequentialBlock;
import smile.deep.tensor.Tensor;
/**
* Mobile inverted bottleneck convolution.
*
* MBConv = expansion-conv1x1 + depthwise-conv3x3 + SENet + conv1x1 + add
*
* @author Haifeng Li
*/
public class MBConv extends LayerBlock {
private final SequentialBlock block = new SequentialBlock();
private final StochasticDepth stochasticDepth;
private final boolean useResidual;
/**
* Constructor.
* @param config block configuration.
* @param stochasticDepthProb the probability of the input to be zeroed
* in stochastic depth layer.
* @param normLayer the functor to create the normalization layer.
*/
public MBConv(MBConvConfig config, double stochasticDepthProb, IntFunction normLayer) {
super("MBConv");
int stride = config.stride();
if (stride < 1 || stride > 2) {
throw new IllegalArgumentException("Illegal stride value: " + stride);
}
// expand
int expandedChannels = MBConvConfig.adjustChannels(config.inputChannels(), config.expandRatio());
if (expandedChannels != config.inputChannels()) {
Conv2dNormActivation expand = new Conv2dNormActivation(new Conv2dNormActivation.Options(
config.inputChannels(), expandedChannels, 1, normLayer, new SiLU(true)));
block.add(expand);
}
// depthwise
Conv2dNormActivation depthwise = new Conv2dNormActivation(new Conv2dNormActivation.Options(
expandedChannels, expandedChannels, config.kernel(), config.stride(),
expandedChannels, normLayer, new SiLU(true)));
block.add(depthwise);
// squeeze and excitation
int squeezeChannels = Math.max(1, config.inputChannels() / 4);
SqueezeExcitation se = new SqueezeExcitation(expandedChannels, squeezeChannels, new SiLU(true), new Sigmoid(true));
block.add(se);
// project
Conv2dNormActivation project = new Conv2dNormActivation(new Conv2dNormActivation.Options(
expandedChannels, config.outputChannels(), 1, normLayer, null));
block.add(project);
useResidual = stride == 1 && config.inputChannels() == config.outputChannels();
stochasticDepth = new StochasticDepth(stochasticDepthProb, "row");
add("block", block);
add("stochastic_depth", stochasticDepth);
}
@Override
public Tensor forward(Tensor input) {
try (input) {
Tensor output = block.forward(input);
if (useResidual) {
output = stochasticDepth.forward(output);
output.add_(input);
}
return output;
}
}
}