All Downloads are FREE. Search and download functionalities are using the official Maven repository.

smile.math.Math Maven / Gradle / Ivy

There is a newer version: 2.6.0
Show newest version
/******************************************************************************
 *                   Confidential Proprietary                                 *
 *         (c) Copyright Haifeng Li 2011, All Rights Reserved                 *
 ******************************************************************************/
package smile.math;

import java.util.Arrays;
import java.util.HashSet;
import java.util.Iterator;

import smile.math.matrix.EigenValueDecomposition;
import smile.math.matrix.IMatrix;
import smile.math.matrix.LUDecomposition;
import smile.math.matrix.Matrix;
import smile.math.matrix.QRDecomposition;
import smile.math.matrix.SingularValueDecomposition;
import smile.sort.QuickSelect;
import smile.sort.QuickSort;
import smile.sort.SortUtils;

/**
 * A collection of useful mathematical functions. The following functions are
 * included:
 * 
    *
  • scalar functions: Besides all methods in java.lang.Math are included * for convenience, sqr, factorial, logFractorial, choose, logChoose, log2 are * provided. *
  • vector functions: min, max, mean, sum, var, sd, cov, L1 norm, * L2 norm, L norm, normalize, unitize, cor, Spearman * correlation, Kendall correlation, distance, dot product, histogram, vector * (element-wise) copy, equal, plus, minus, times, and divide. *
  • matrix functions: min, max, rowmean, sum, L1 norm, * L2 norm, L norm, rank, det, trace, transpose, * inverse, SVD and eigen decomposition, linear systems (dense or tridiagonal) * and least square, matrix copy, equal, plus, minus and times. *
  • random functions: random, randomInt, and permutate. *
  • Find the root of a univariate function with or without derivative. *
* * @author Haifeng Li */ public class Math { /** * The base of the natural logarithms. */ public static final double E = java.lang.Math.E; /** * The ratio of the circumference of a circle to its diameter. */ public static final double PI = java.lang.Math.PI; /** * The machine precision for the double type, which is the difference between 1 * and the smallest value greater than 1 that is representable for the double type. */ public static double EPSILON = Math.pow(2.0, -52.0); /** * The base of the exponent of the double type. */ public static int RADIX = 2; /** * The number of digits (in radix base) in the mantissa. */ public static int DIGITS = 53; /** * Rounding style. *
    *
  • 0 if floating-point addition chops *
  • 1 if floating-point addition rounds, but not in the ieee style *
  • 2 if floating-point addition rounds in the ieee style *
  • 3 if floating-point addition chops, and there is partial underflow *
  • 4 if floating-point addition rounds, but not in the ieee style, and there is partial underflow *
  • 5 if floating-point addition rounds in the ieee style, and there is partial underflow *
*/ public static int ROUND_STYLE = 2; /** * The largest negative integer such that 1.0 + RADIXMACHEP ≠ 1.0, * except that machep is bounded below by -(DIGITS+3) */ public static int MACHEP = -52; /** * The largest negative integer such that 1.0 - RADIXNEGEP ≠ 1.0, * except that negeps is bounded below by -(DIGITS+3) */ public static int NEGEP = -53; /** * High quality random number generator. */ private static smile.math.Random random = new smile.math.Random(); /** * Dynamically determines the machine parameters of the floating-point arithmetic. */ static { double beta, betain, betah, a, b, ZERO, ONE, TWO, temp, tempa, temp1; int i, itemp; ONE = (double) 1; TWO = ONE + ONE; ZERO = ONE - ONE; a = ONE; temp1 = ONE; while (temp1 - ONE == ZERO) { a = a + a; temp = a + ONE; temp1 = temp - a; } b = ONE; itemp = 0; while (itemp == 0) { b = b + b; temp = a + b; itemp = (int) (temp - a); } RADIX = itemp; beta = (double) RADIX; DIGITS = 0; b = ONE; temp1 = ONE; while (temp1 - ONE == ZERO) { DIGITS = DIGITS + 1; b = b * beta; temp = b + ONE; temp1 = temp - b; } ROUND_STYLE = 0; betah = beta / TWO; temp = a + betah; if (temp - a != ZERO) { ROUND_STYLE = 1; } tempa = a + beta; temp = tempa + betah; if ((ROUND_STYLE == 0) && (temp - tempa != ZERO)) { ROUND_STYLE = 2; } NEGEP = DIGITS + 3; betain = ONE / beta; a = ONE; for (i = 0; i < NEGEP; i++) { a = a * betain; } b = a; temp = ONE - a; while (temp - ONE == ZERO) { a = a * beta; NEGEP = NEGEP - 1; temp = ONE - a; } NEGEP = -(NEGEP); MACHEP = -(DIGITS) - 3; a = b; temp = ONE + a; while (temp - ONE == ZERO) { a = a * beta; MACHEP = MACHEP + 1; temp = ONE + a; } EPSILON = a; } /** * Private constructor. */ private Math() { } /** * Returns the absolute value of a double value. */ public static double abs(double a) { return java.lang.Math.abs(a); } /** * Returns the absolute value of a float value. */ public static float abs(float a) { return java.lang.Math.abs(a); } /** * Returns the absolute value of an int value. */ public static int abs(int a) { return java.lang.Math.abs(a); } /** * Returns the absolute value of a long value. */ public static long abs(long a) { return java.lang.Math.abs(a); } /** * Returns the arc cosine of an angle, in the range of 0.0 through pi. */ public static double acos(double a) { return java.lang.Math.acos(a); } /** * Returns the arc sine of an angle, in the range of -pi/2 through pi/2. */ public static double asin(double a) { return java.lang.Math.asin(a); } /** * Returns the arc tangent of an angle, in the range of -pi/2 through pi/2. */ public static double atan(double a) { return java.lang.Math.atan(a); } /** * Converts rectangular coordinates (x, y) to polar (r, theta). */ public static double atan2(double y, double x) { return java.lang.Math.atan2(y, x); } /** * Returns the cube root of a double value. */ public static double cbrt(double a) { return java.lang.Math.cbrt(a); } /** * Returns the smallest (closest to negative infinity) double value that * is greater than or equal to the argument and is equal to a mathematical * integer. */ public static double ceil(double a) { return java.lang.Math.ceil(a); } /** * Returns the first floating-point argument with the sign of the second * floating-point argument. */ public static double copySign(double magnitude, double sign) { return java.lang.Math.copySign(magnitude, sign); } /** * Returns the first floating-point argument with the sign of the second * floating-point argument. */ public static float copySign(float magnitude, float sign) { return java.lang.Math.copySign(magnitude, sign); } /** * Returns the trigonometric cosine of an angle. */ public static double cos(double a) { return java.lang.Math.cos(a); } /** * Returns the hyperbolic cosine of a double value. */ public static double cosh(double x) { return java.lang.Math.cosh(x); } /** * Returns Euler's number e raised to the power of a double value. */ public static double exp(double a) { return java.lang.Math.exp(a); } /** * Returns ex-1. */ public static double expm1(double x) { return java.lang.Math.expm1(x); } /** * Returns the largest (closest to positive infinity) double value that * is less than or equal to the argument and is equal to a mathematical * integer. */ public static double floor(double a) { return java.lang.Math.floor(a); } /** * Returns the unbiased exponent used in the representation of a double. */ public static int getExponent(double d) { return java.lang.Math.getExponent(d); } /** * Returns the unbiased exponent used in the representation of a float. */ public static int getExponent(float f) { return java.lang.Math.getExponent(f); } /** * Returns sqrt(x2 +y2) without intermediate overflow or underflow. */ public static double hypot(double x, double y) { return java.lang.Math.hypot(x, y); } /** * Computes the remainder operation on two arguments as prescribed by the IEEE 754 standard. */ public static double IEEEremainder(double f1, double f2) { return java.lang.Math.IEEEremainder(f1, f2); } /** * Returns the natural logarithm (base e) of a double value. */ public static double log(double a) { return java.lang.Math.log(a); } /** * Returns the base 10 logarithm of a double value. */ public static double log10(double a) { return java.lang.Math.log10(a); } /** * Returns the natural logarithm of the sum of the argument and 1. */ public static double log1p(double x) { return java.lang.Math.log1p(x); } /** * Returns the greater of two double values. */ public static double max(double a, double b) { return java.lang.Math.max(a, b); } /** * Returns the greater of two float values. */ public static float max(float a, float b) { return java.lang.Math.max(a, b); } /** * Returns the greater of two int values. */ public static int max(int a, int b) { return java.lang.Math.max(a, b); } /** * Returns the greater of two long values. */ public static long max(long a, long b) { return java.lang.Math.max(a, b); } /** * Returns the smaller of two double values. */ public static double min(double a, double b) { return java.lang.Math.min(a, b); } /** * Returns the smaller of two float values. */ public static float min(float a, float b) { return java.lang.Math.min(a, b); } /** * Returns the smaller of two int values. */ public static int min(int a, int b) { return java.lang.Math.min(a, b); } /** * Returns the smaller of two long values. */ public static long min(long a, long b) { return java.lang.Math.min(a, b); } /** * Returns the floating-point number adjacent to the first argument in * the direction of the second argument. */ public static double nextAfter(double start, double direction) { return java.lang.Math.nextAfter(start, direction); } /** * Returns the floating-point number adjacent to the first argument in * the direction of the second argument. */ public static float nextAfter(float start, double direction) { return java.lang.Math.nextAfter(start, direction); } /** * Returns the floating-point value adjacent to d in the direction * of positive infinity. */ public static double nextUp(double d) { return java.lang.Math.nextUp(d); } /** * Returns the floating-point value adjacent to f in the direction * of positive infinity. */ public static float nextUp(float f) { return java.lang.Math.nextUp(f); } /** * Returns the value of the first argument raised to the power of the second argument. */ public static double pow(double a, double b) { return java.lang.Math.pow(a, b); } /** * Returns the double value that is closest in value to the argument and is equal to a mathematical integer. */ public static double rint(double a) { return java.lang.Math.rint(a); } /** * Returns the closest long to the argument. */ public static long round(double a) { return java.lang.Math.round(a); } /** * Returns the closest int to the argument. */ public static int round(float a) { return java.lang.Math.round(a); } /** * Returns d x 2scaleFactor rounded as if performed by a single * correctly rounded floating-point multiply to a member of the double value * set. */ public static double scalb(double d, int scaleFactor) { return java.lang.Math.scalb(d, scaleFactor); } /** * Returns f x 2scaleFactor rounded as if performed by a single * correctly rounded floating-point multiply to a member of the float value * set. */ public static float scalb(float f, int scaleFactor) { return java.lang.Math.scalb(f, scaleFactor); } /** * Returns the signum of the argument; zero if the argument is * zero, 1.0 if the argument is greater than zero, -1.0 if the argument * is less than zero. */ public static double signum(double d) { return java.lang.Math.signum(d); } /** * Returns the signum function of the argument; zero if the argument is * zero, 1.0f if the argument is greater than zero, -1.0f if the argument * is less than zero. */ public static float signum(float f) { return java.lang.Math.signum(f); } /** * Returns the trigonometric sine of an angle. */ public static double sin(double a) { return java.lang.Math.sin(a); } /** * Returns the hyperbolic sine of a double value. */ public static double sinh(double x) { return java.lang.Math.sinh(x); } /** * Returns the correctly rounded positive square root of a double value. */ public static double sqrt(double a) { return java.lang.Math.sqrt(a); } /** * Returns the trigonometric tangent of an angle. */ public static double tan(double a) { return java.lang.Math.tan(a); } /** * Returns the hyperbolic tangent of a double value. */ public static double tanh(double x) { return java.lang.Math.tanh(x); } /** * Converts an angle measured in radians to an approximately equivalent * angle measured in degrees. */ public static double toDegrees(double angrad) { return java.lang.Math.toDegrees(angrad); } /** * Converts an angle measured in degrees to an approximately equivalent * angle measured in radians. */ public static double toRadians(double angdeg) { return java.lang.Math.toRadians(angdeg); } /** * Returns the size of an ulp of the argument. */ public static double ulp(double d) { return java.lang.Math.ulp(d); } /** * * Returns the size of an ulp of the argument. */ public static float ulp(float f) { return java.lang.Math.ulp(f); } /** * log(2), used in log2(). */ private static final double LOG2 = java.lang.Math.log(2); /** * Log of base 2. */ public static double log2(double x) { return java.lang.Math.log(x) / LOG2; } /** * Returns true if two double values equals to each other in the system precision. * @param a a double value. * @param b a double value. * @return true if two double values equals to each other in the system precision */ public static boolean equals(double a, double b) { if (a == b) { return true; } double absa = Math.abs(a); double absb = Math.abs(b); return Math.abs(a - b) <= Math.min(absa, absb) * 2.2204460492503131e-16; } /** * Logistic sigmoid function. */ public static double logistic(double x) { double y = 0.0; if (x < -40) { y = 2.353853e+17; } else if (x > 40) { y = 1.0 + 4.248354e-18; } else { y = 1.0 + Math.exp(-x); } return 1.0 / y; } /** * Returns x * x. */ public static double sqr(double x) { return x * x; } /** * Returns true if x is a power of 2. */ public static boolean isPower2(int x) { return x > 0 && (x & (x - 1)) == 0; } /** * Round a double vale to given digits such as 10^n, where n is a positive * or negative integer. */ public static double round(double x, int decimal) { if (decimal < 0) { return round(x / pow(10, -decimal)) * pow(10, -decimal); } else { return round(x * pow(10, decimal)) / pow(10, decimal); } } /** * factorial of n * * @return factorial returned as double but is, numerically, an integer. * Numerical rounding may makes this an approximation after n = 21 */ public static double factorial(int n) { if (n < 0) { throw new IllegalArgumentException("n has to be nonnegative."); } double f = 1.0; for (int i = 2; i <= n; i++) { f *= i; } return f; } /** * log of factorial of n */ public static double logFactorial(int n) { if (n < 0) { throw new IllegalArgumentException(String.format("n has to be nonnegative: %d", n)); } double f = 0.0; for (int i = 2; i <= n; i++) { f += Math.log(i); } return f; } /** * n choose k. Returns 0 if n is less than k. */ public static double choose(int n, int k) { if (n < 0 || k < 0) { throw new IllegalArgumentException(String.format("Invalid n = %d, k = %d", n, k)); } if (n < k) { return 0.0; } return Math.floor(0.5 + Math.exp(logChoose(n, k))); } /** * log of n choose k */ public static double logChoose(int n, int k) { if (n < 0 || k < 0 || k > n) { throw new IllegalArgumentException(String.format("Invalid n = %d, k = %d", n, k)); } return Math.logFactorial(n) - Math.logFactorial(k) - Math.logFactorial(n - k); } /** * Given a set of n probabilities, generate a random number in [0, n). * @param prob probabilities of size n. The prob argument can be used to * give a vector of weights for obtaining the elements of the vector being * sampled. They need not sum to one, but they should be nonnegative and * not all zero. * @return a random integer in [0, n). */ public static int random(double[] prob) { int[] ans = random(prob, 1); return ans[0]; } /** * Given a set of m probabilities, draw with replacement a set of n random * number in [0, m). * @param prob probabilities of size n. The prob argument can be used to * give a vector of weights for obtaining the elements of the vector being * sampled. They need not sum to one, but they should be nonnegative and * not all zero. * @return an random array of length n in range of [0, m). */ public static int[] random(double[] prob, int n) { // set up alias table double[] q = new double[prob.length]; for (int i = 0; i < prob.length; i++) { q[i] = prob[i] * prob.length; } // initialize a with indices int[] a = new int[prob.length]; for (int i = 0; i < prob.length; i++) { a[i] = i; } // set up H and L int[] HL = new int[prob.length]; int head = 0; int tail = prob.length - 1; for (int i = 0; i < prob.length; i++) { if (q[i] >= 1.0) { HL[head++] = i; } else { HL[tail--] = i; } } while (head != 0 && tail != prob.length - 1) { int j = HL[tail + 1]; int k = HL[head - 1]; a[j] = k; q[k] += q[j] - 1; tail++; // remove j from L if (q[k] < 1.0) { HL[tail--] = k; // add k to L head--; // remove k } } // generate sample int[] ans = new int[n]; for (int i = 0; i < n; i++) { double rU = random() * prob.length; int k = (int) (rU); rU -= k; /* rU becomes rU-[rU] */ if (rU < q[k]) { ans[i] = k; } else { ans[i] = a[k]; } } return ans; } /** * Generate a random number in [0, 1). This method is properly synchronized * to allow correct use by more than one thread. However, if many threads * need to generate pseudorandom numbers at a great rate, it may reduce * contention for each thread to have its own pseudorandom-number generator. */ public static synchronized double random() { return random.nextDouble(); } /** * Generate n random numbers in [0, 1). This method is properly synchronized * to allow correct use by more than one thread. However, if many threads * need to generate pseudorandom numbers at a great rate, it may reduce * contention for each thread to have its own pseudorandom-number generator. */ public static synchronized double[] random(int n) { double[] x = new double[n]; random.nextDoubles(x); return x; } /** * Generate a uniform random number in the range [lo, hi). This method is * properly synchronized to allow correct use by more than one thread. * However, if many threads need to generate pseudorandom numbers at a * great rate, it may reduce contention for each thread to have its own * pseudorandom-number generator. * @param lo lower limit of range * @param hi upper limit of range * @return a uniform random real in the range [lo, hi) */ public static synchronized double random(double lo, double hi) { return random.nextDouble(lo, hi); } /** * Generate n uniform random numbers in the range [lo, hi). This method is * properly synchronized to allow correct use by more than one thread. * However, if many threads need to generate pseudorandom numbers at a * great rate, it may reduce contention for each thread to have its own * pseudorandom-number generator. * @param n size of the array * @param lo lower limit of range * @param hi upper limit of range * @return a uniform random real in the range [lo, hi) */ public static synchronized double[] random(double lo, double hi, int n) { double[] x = new double[n]; random.nextDoubles(x, lo, hi); return x; } /** * Returns a random integer in [0, n). This method is properly synchronized * to allow correct use by more than one thread. However, if many threads * need to generate pseudorandom numbers at a great rate, it may reduce * contention for each thread to have its own pseudorandom-number generator. */ public static synchronized int randomInt(int n) { return random.nextInt(n); } /** * Returns a random integer in [lo, hi). This method is properly synchronized * to allow correct use by more than one thread. However, if many threads * need to generate pseudorandom numbers at a great rate, it may reduce * contention for each thread to have its own pseudorandom-number generator. */ public static synchronized int randomInt(int lo, int hi) { int w = hi - lo; return lo + random.nextInt(w); } /** * Generates a permutation of 0, 1, 2, ..., n-1, which is useful for * sampling without replacement. */ public static int[] permutate(int n) { return random.permutate(n); } /** * Generates a permutation of given array. This method is properly synchronized * to allow correct use by more than one thread. However, if many threads * need to generate pseudorandom numbers at a great rate, it may reduce * contention for each thread to have its own pseudorandom-number generator. */ public static void permutate(int[] x) { random.permutate(x); } /** * Generates a permutation of given array. This method is properly synchronized * to allow correct use by more than one thread. However, if many threads * need to generate pseudorandom numbers at a great rate, it may reduce * contention for each thread to have its own pseudorandom-number generator. */ public static void permutate(float[] x) { random.permutate(x); } /** * Generates a permutation of given array. This method is properly synchronized * to allow correct use by more than one thread. However, if many threads * need to generate pseudorandom numbers at a great rate, it may reduce * contention for each thread to have its own pseudorandom-number generator. */ public static void permutate(double[] x) { random.permutate(x); } /** * Generates a permutation of given array. This method is properly synchronized * to allow correct use by more than one thread. However, if many threads * need to generate pseudorandom numbers at a great rate, it may reduce * contention for each thread to have its own pseudorandom-number generator. */ public static void permutate(Object[] x) { random.permutate(x); } /** * Returns a slice of data for given indices. */ public static E[] slice(E[] data, int[] index) { int n = index.length; @SuppressWarnings("unchecked") E[] x = (E[]) java.lang.reflect.Array.newInstance(data.getClass().getComponentType(), n); for (int i = 0; i < n; i++) { x[i] = data[index[i]]; } return x; } /** * Returns a slice of data for given indices. */ public static int[] slice(int[] data, int[] index) { int n = index.length; int[] x = new int[n]; for (int i = 0; i < n; i++) { x[i] = data[index[i]]; } return x; } /** * Returns a slice of data for given indices. */ public static float[] slice(float[] data, int[] index) { int n = index.length; float[] x = new float[n]; for (int i = 0; i < n; i++) { x[i] = data[index[i]]; } return x; } /** * Returns a slice of data for given indices. */ public static double[] slice(double[] data, int[] index) { int n = index.length; double[] x = new double[n]; for (int i = 0; i < n; i++) { x[i] = data[index[i]]; } return x; } /** * Determines if the polygon contains the specified coordinates. * * @param point the coordinates of specified point to be tested. * @return true if the Polygon contains the specified coordinates; false otherwise. */ public static boolean contains(double[][] polygon, double[] point) { return contains(polygon, point[0], point[1]); } /** * Determines if the polygon contains the specified coordinates. * * @param x the specified x coordinate. * @param y the specified y coordinate. * @return true if the Polygon contains the specified coordinates; false otherwise. */ public static boolean contains(double[][] polygon, double x, double y) { if (polygon.length <= 2) { return false; } int hits = 0; int n = polygon.length; double lastx = polygon[n - 1][0]; double lasty = polygon[n - 1][1]; double curx, cury; // Walk the edges of the polygon for (int i = 0; i < n; lastx = curx, lasty = cury, i++) { curx = polygon[i][0]; cury = polygon[i][1]; if (cury == lasty) { continue; } double leftx; if (curx < lastx) { if (x >= lastx) { continue; } leftx = curx; } else { if (x >= curx) { continue; } leftx = lastx; } double test1, test2; if (cury < lasty) { if (y < cury || y >= lasty) { continue; } if (x < leftx) { hits++; continue; } test1 = x - curx; test2 = y - cury; } else { if (y < lasty || y >= cury) { continue; } if (x < leftx) { hits++; continue; } test1 = x - lastx; test2 = y - lasty; } if (test1 < (test2 / (lasty - cury) * (lastx - curx))) { hits++; } } return ((hits & 1) != 0); } /** * Reverses the order of the elements in the specified array. * @param a an array to reverse. */ public static void reverse(int[] a) { int i = 0, j = a.length - 1; while (i < j) { SortUtils.swap(a, i++, j--); // code for swap not shown, but easy enough } } /** * Reverses the order of the elements in the specified array. * @param a an array to reverse. */ public static void reverse(float[] a) { int i = 0, j = a.length - 1; while (i < j) { SortUtils.swap(a, i++, j--); // code for swap not shown, but easy enough } } /** * Reverses the order of the elements in the specified array. * @param a an array to reverse. */ public static void reverse(double[] a) { int i = 0, j = a.length - 1; while (i < j) { SortUtils.swap(a, i++, j--); // code for swap not shown, but easy enough } } /** * Reverses the order of the elements in the specified array. * @param a an array to reverse. */ public static void reverse(T[] a) { int i = 0, j = a.length - 1; while (i < j) { SortUtils.swap(a, i++, j--); } } /** * minimum of 3 integers */ public static int min(int a, int b, int c) { return min(min(a, b), c); } /** * minimum of 3 floats */ public static double min(float a, float b, float c) { return min(min(a, b), c); } /** * minimum of 3 doubles */ public static double min(double a, double b, double c) { return min(min(a, b), c); } /** * maximum of 3 integers */ public static int max(int a, int b, int c) { return max(max(a, b), c); } /** * maximum of 3 floats */ public static float max(float a, float b, float c) { return max(max(a, b), c); } /** * maximum of 3 doubles */ public static double max(double a, double b, double c) { return max(max(a, b), c); } /** * Returns the minimum value of an array. */ public static int min(int... x) { int m = x[0]; for (int n : x) { if (n < m) { m = n; } } return m; } /** * Returns the minimum value of an array. */ public static float min(float... x) { float m = Float.POSITIVE_INFINITY; for (float n : x) { if (n < m) { m = n; } } return m; } /** * Returns the minimum value of an array. */ public static double min(double... x) { double m = Double.POSITIVE_INFINITY; for (double n : x) { if (n < m) { m = n; } } return m; } /** * Returns the index of minimum value of an array. */ public static int whichMin(int... x) { int m = x[0]; int which = 0; for (int i = 1; i < x.length; i++) { if (x[i] < m) { m = x[i]; which = i; } } return which; } /** * Returns the index of minimum value of an array. */ public static int whichMin(float... x) { float m = Float.POSITIVE_INFINITY; int which = 0; for (int i = 0; i < x.length; i++) { if (x[i] < m) { m = x[i]; which = i; } } return which; } /** * Returns the index of minimum value of an array. */ public static int whichMin(double... x) { double m = Double.POSITIVE_INFINITY; int which = 0; for (int i = 0; i < x.length; i++) { if (x[i] < m) { m = x[i]; which = i; } } return which; } /** * Returns the maximum value of an array. */ public static int max(int... x) { int m = x[0]; for (int n : x) { if (n > m) { m = n; } } return m; } /** * Returns the maximum value of an array. */ public static float max(float... x) { float m = Float.NEGATIVE_INFINITY; for (float n : x) { if (n > m) { m = n; } } return m; } /** * Returns the maximum value of an array. */ public static double max(double... x) { double m = Double.NEGATIVE_INFINITY; for (double n : x) { if (n > m) { m = n; } } return m; } /** * Returns the index of maximum value of an array. */ public static int whichMax(int... x) { int m = x[0]; int which = 0; for (int i = 1; i < x.length; i++) { if (x[i] > m) { m = x[i]; which = i; } } return which; } /** * Returns the index of maximum value of an array. */ public static int whichMax(float... x) { float m = Float.NEGATIVE_INFINITY; int which = 0; for (int i = 0; i < x.length; i++) { if (x[i] > m) { m = x[i]; which = i; } } return which; } /** * Returns the index of maximum value of an array. */ public static int whichMax(double... x) { double m = Double.NEGATIVE_INFINITY; int which = 0; for (int i = 0; i < x.length; i++) { if (x[i] > m) { m = x[i]; which = i; } } return which; } /** * Returns the minimum of a matrix. */ public static int min(int[][] matrix) { int m = matrix[0][0]; for (int[] x : matrix) { for (int y : x) { if (m > y) { m = y; } } } return m; } /** * Returns the minimum of a matrix. */ public static double min(double[][] matrix) { double m = Double.POSITIVE_INFINITY; for (double[] x : matrix) { for (double y : x) { if (m > y) { m = y; } } } return m; } /** * Returns the maximum of a matrix. */ public static int max(int[][] matrix) { int m = matrix[0][0]; for (int[] x : matrix) { for (int y : x) { if (m < y) { m = y; } } } return m; } /** * Returns the maximum of a matrix. */ public static double max(double[][] matrix) { double m = Double.NEGATIVE_INFINITY; for (double[] x : matrix) { for (double y : x) { if (m < y) { m = y; } } } return m; } /** * Returns the row minimum for a matrix. */ public static double[] rowMin(double[][] data) { double[] x = new double[data.length]; for (int i = 0; i < x.length; i++) { x[i] = min(data[i]); } return x; } /** * Returns the row maximum for a matrix. */ public static double[] rowMax(double[][] data) { double[] x = new double[data.length]; for (int i = 0; i < x.length; i++) { x[i] = max(data[i]); } return x; } /** * Returns the row sums for a matrix. */ public static double[] rowSum(double[][] data) { double[] x = new double[data.length]; for (int i = 0; i < x.length; i++) { x[i] = sum(data[i]); } return x; } /** * Returns the row means for a matrix. */ public static double[] rowMean(double[][] data) { double[] x = new double[data.length]; for (int i = 0; i < x.length; i++) { x[i] = mean(data[i]); } return x; } /** * Returns the row standard deviations for a matrix. */ public static double[] rowSd(double[][] data) { double[] x = new double[data.length]; for (int i = 0; i < x.length; i++) { x[i] = sd(data[i]); } return x; } /** * Returns the column minimum for a matrix. */ public static double[] colMin(double[][] data) { double[] x = new double[data[0].length]; for (int i = 0; i < x.length; i++) { x[i] = Double.POSITIVE_INFINITY; } for (int i = 0; i < data.length; i++) { for (int j = 0; j < x.length; j++) { if (x[j] > data[i][j]) { x[j] = data[i][j]; } } } return x; } /** * Returns the column maximum for a matrix. */ public static double[] colMax(double[][] data) { double[] x = new double[data[0].length]; for (int i = 0; i < x.length; i++) { x[i] = Double.NEGATIVE_INFINITY; } for (int i = 0; i < data.length; i++) { for (int j = 0; j < x.length; j++) { if (x[j] < data[i][j]) { x[j] = data[i][j]; } } } return x; } /** * Returns the column sums for a matrix. */ public static double[] colSum(double[][] data) { double[] x = data[0].clone(); for (int i = 1; i < data.length; i++) { for (int j = 0; j < x.length; j++) { x[j] += data[i][j]; } } return x; } /** * Returns the column sums for a matrix. */ public static double[] colMean(double[][] data) { double[] x = data[0].clone(); for (int i = 1; i < data.length; i++) { for (int j = 0; j < x.length; j++) { x[j] += data[i][j]; } } scale(1.0 / data.length, x); return x; } /** * Returns the column deviations for a matrix. */ public static double[] colSd(double[][] data) { if (data.length < 2) { throw new IllegalArgumentException("Array length is less than 2."); } int p = data[0].length; double[] sum = new double[p]; double[] sumsq = new double[p]; for (double[] x : data) { for (int i = 0; i < p; i++) { sum[i] += x[i]; sumsq[i] += x[i] * x[i]; } } int n = data.length - 1; for (int i = 0; i < p; i++) { sumsq[i] = java.lang.Math.sqrt(sumsq[i] / n - (sum[i] / data.length) * (sum[i] / n)); } return sumsq; } /** * Returns the sum of an array. */ public static int sum(int[] x) { double sum = 0.0; for (int n : x) { sum += n; } if (sum > Integer.MAX_VALUE || sum < -Integer.MAX_VALUE) { throw new ArithmeticException("Sum overflow: " + sum); } return (int) sum; } /** * Returns the sum of an array. */ public static double sum(float[] x) { double sum = 0.0; for (float n : x) { sum += n; } return sum; } /** * Returns the sum of an array. */ public static double sum(double[] x) { double sum = 0.0; for (double n : x) { sum += n; } return sum; } /** * Find the median of an array of type int. The input array will * be rearranged. */ public static int median(int[] a) { return QuickSelect.median(a); } /** * Find the median of an array of type float. The input array will * be rearranged. */ public static float median(float[] a) { return QuickSelect.median(a); } /** * Find the median of an array of type double. The input array will * be rearranged. */ public static double median(double[] a) { return QuickSelect.median(a); } /** * Find the median of an array of type double. The input array will * be rearranged. */ public static > T median(T[] a) { return QuickSelect.median(a); } /** * Find the first quantile (p = 1/4) of an array of type int. The input array will * be rearranged. */ public static int q1(int[] a) { return QuickSelect.q1(a); } /** * Find the first quantile (p = 1/4) of an array of type float. The input array will * be rearranged. */ public static float q1(float[] a) { return QuickSelect.q1(a); } /** * Find the first quantile (p = 1/4) of an array of type double. The input array will * be rearranged. */ public static double q1(double[] a) { return QuickSelect.q1(a); } /** * Find the first quantile (p = 1/4) of an array of type double. The input array will * be rearranged. */ public static > T q1(T[] a) { return QuickSelect.q1(a); } /** * Find the third quantile (p = 3/4) of an array of type int. The input array will * be rearranged. */ public static int q3(int[] a) { return QuickSelect.q3(a); } /** * Find the third quantile (p = 3/4) of an array of type float. The input array will * be rearranged. */ public static float q3(float[] a) { return QuickSelect.q3(a); } /** * Find the third quantile (p = 3/4) of an array of type double. The input array will * be rearranged. */ public static double q3(double[] a) { return QuickSelect.q3(a); } /** * Find the third quantile (p = 3/4) of an array of type double. The input array will * be rearranged. */ public static > T q3(T[] a) { return QuickSelect.q3(a); } /** * Returns the mean of an array. */ public static double mean(int[] x) { return (double) sum(x) / x.length; } /** * Returns the mean of an array. */ public static double mean(float[] x) { return sum(x) / x.length; } /** * Returns the mean of an array. */ public static double mean(double[] x) { return sum(x) / x.length; } /** * Returns the variance of an array. */ public static double var(int[] x) { if (x.length < 2) { throw new IllegalArgumentException("Array length is less than 2."); } double sum = 0.0; double sumsq = 0.0; for (int xi : x) { sum += xi; sumsq += xi * xi; } int n = x.length - 1; return sumsq / n - (sum / x.length) * (sum / n); } /** * Returns the variance of an array. */ public static double var(float[] x) { if (x.length < 2) { throw new IllegalArgumentException("Array length is less than 2."); } double sum = 0.0; double sumsq = 0.0; for (float xi : x) { sum += xi; sumsq += xi * xi; } int n = x.length - 1; return sumsq / n - (sum / x.length) * (sum / n); } /** * Returns the variance of an array. */ public static double var(double[] x) { if (x.length < 2) { throw new IllegalArgumentException("Array length is less than 2."); } double sum = 0.0; double sumsq = 0.0; for (double xi : x) { sum += xi; sumsq += xi * xi; } int n = x.length - 1; return sumsq / n - (sum / x.length) * (sum / n); } /** * Returns the standard deviation of an array. */ public static double sd(int[] x) { return sqrt(var(x)); } /** * Returns the standard deviation of an array. */ public static double sd(float[] x) { return sqrt(var(x)); } /** * Returns the standard deviation of an array. */ public static double sd(double[] x) { return sqrt(var(x)); } /** * Returns the median absolute deviation (MAD). Note that input array will * be altered after the computation. MAD is a robust measure of * the variability of a univariate sample of quantitative data. For a * univariate data set X1, X2, ..., Xn, * the MAD is defined as the median of the absolute deviations from the data's median: *

* MAD(X) = median(|Xi - median(Xi)|) *

* that is, starting with the residuals (deviations) from the data's median, * the MAD is the median of their absolute values. *

* MAD is a more robust estimator of scale than the sample variance or * standard deviation. For instance, MAD is more resilient to outliers in * a data set than the standard deviation. It thus behaves better with * distributions without a mean or variance, such as the Cauchy distribution. *

* In order to use the MAD as a consistent estimator for the estimation of * the standard deviation σ, one takes σ = K * MAD, where K is * a constant scale factor, which depends on the distribution. For normally * distributed data K is taken to be 1.4826. Other distributions behave * differently: for example for large samples from a uniform continuous * distribution, this factor is about 1.1547. */ public static double mad(int[] x) { int m = median(x); for (int i = 0; i < x.length; i++) { x[i] = Math.abs(x[i] - m); } return median(x); } /** * Returns the median absolute deviation (MAD). Note that input array will * be altered after the computation. MAD is a robust measure of * the variability of a univariate sample of quantitative data. For a * univariate data set X1, X2, ..., Xn, * the MAD is defined as the median of the absolute deviations from the data's median: *

* MAD(X) = median(|Xi - median(Xi)|) *

* that is, starting with the residuals (deviations) from the data's median, * the MAD is the median of their absolute values. *

* MAD is a more robust estimator of scale than the sample variance or * standard deviation. For instance, MAD is more resilient to outliers in * a data set than the standard deviation. It thus behaves better with * distributions without a mean or variance, such as the Cauchy distribution. *

* In order to use the MAD as a consistent estimator for the estimation of * the standard deviation σ, one takes σ = K * MAD, where K is * a constant scale factor, which depends on the distribution. For normally * distributed data K is taken to be 1.4826. Other distributions behave * differently: for example for large samples from a uniform continuous * distribution, this factor is about 1.1547. */ public static double mad(float[] x) { float m = median(x); for (int i = 0; i < x.length; i++) { x[i] = Math.abs(x[i] - m); } return median(x); } /** * Returns the median absolute deviation (MAD). Note that input array will * be altered after the computation. MAD is a robust measure of * the variability of a univariate sample of quantitative data. For a * univariate data set X1, X2, ..., Xn, * the MAD is defined as the median of the absolute deviations from the data's median: *

* MAD(X) = median(|Xi - median(Xi)|) *

* that is, starting with the residuals (deviations) from the data's median, * the MAD is the median of their absolute values. *

* MAD is a more robust estimator of scale than the sample variance or * standard deviation. For instance, MAD is more resilient to outliers in * a data set than the standard deviation. It thus behaves better with * distributions without a mean or variance, such as the Cauchy distribution. *

* In order to use the MAD as a consistent estimator for the estimation of * the standard deviation σ, one takes σ = K * MAD, where K is * a constant scale factor, which depends on the distribution. For normally * distributed data K is taken to be 1.4826. Other distributions behave * differently: for example for large samples from a uniform continuous * distribution, this factor is about 1.1547. */ public static double mad(double[] x) { double m = median(x); for (int i = 0; i < x.length; i++) { x[i] = Math.abs(x[i] - m); } return median(x); } /** * Given a set of boolean values, are all of the values true? */ public static boolean all(boolean[] x) { for (boolean b : x) { if (!b) { return false; } } return true; } /** * Given a set of boolean values, is at least one of the values true? */ public static boolean any(boolean[] x) { for (boolean b : x) { if (b) { return true; } } return false; } /** * The Euclidean distance. */ public static double distance(int[] x, int[] y) { return Math.sqrt(squaredDistance(x, y)); } /** * The Euclidean distance. */ public static double distance(float[] x, float[] y) { return Math.sqrt(squaredDistance(x, y)); } /** * The Euclidean distance. */ public static double distance(double[] x, double[] y) { return Math.sqrt(squaredDistance(x, y)); } /** * The Euclidean distance. */ public static double distance(SparseArray x, SparseArray y) { return Math.sqrt(squaredDistance(x, y)); } /** * The squared Euclidean distance. */ public static double squaredDistance(int[] x, int[] y) { if (x.length != y.length) { throw new IllegalArgumentException("Input vector sizes are different."); } double sum = 0.0; for (int i = 0; i < x.length; i++) { sum += sqr(x[i] - y[i]); } return sum; } /** * The squared Euclidean distance. */ public static double squaredDistance(float[] x, float[] y) { if (x.length != y.length) { throw new IllegalArgumentException("Input vector sizes are different."); } double sum = 0.0; for (int i = 0; i < x.length; i++) { sum += sqr(x[i] - y[i]); } return sum; } /** * The squared Euclidean distance. */ public static double squaredDistance(double[] x, double[] y) { if (x.length != y.length) { throw new IllegalArgumentException("Input vector sizes are different."); } double sum = 0.0; for (int i = 0; i < x.length; i++) { sum += sqr(x[i] - y[i]); } return sum; } /** * The Euclidean distance. */ public static double squaredDistance(SparseArray x, SparseArray y) { Iterator it1 = x.iterator(); Iterator it2 = y.iterator(); SparseArray.Entry e1 = it1.hasNext() ? it1.next() : null; SparseArray.Entry e2 = it2.hasNext() ? it2.next() : null; double sum = 0.0; while (e1 != null && e2 != null) { if (e1.i == e2.i) { sum += Math.sqr(e1.x - e2.x); e1 = it1.hasNext() ? it1.next() : null; e2 = it2.hasNext() ? it2.next() : null; } else if (e1.i > e2.i) { sum += Math.sqr(e2.x); e2 = it2.hasNext() ? it2.next() : null; } else { sum += Math.sqr(e1.x); e1 = it1.hasNext() ? it1.next() : null; } } while (it1.hasNext()) { sum += Math.sqr(it1.next().x); } while (it2.hasNext()) { sum += Math.sqr(it2.next().x); } return sum; } /** * Kullback-Leibler divergence. The Kullback-Leibler divergence (also * information divergence, information gain, relative entropy, or KLIC) * is a non-symmetric measure of the difference between two probability * distributions P and Q. KL measures the expected number of extra bits * required to code samples from P when using a code based on Q, rather * than using a code based on P. Typically P represents the "true" * distribution of data, observations, or a precise calculated theoretical * distribution. The measure Q typically represents a theory, model, * description, or approximation of P. *

* Although it is often intuited as a distance metric, the KL divergence is * not a true metric - for example, the KL from P to Q is not necessarily * the same as the KL from Q to P. */ public static double KullbackLeiblerDivergence(double[] x, double[] y) { boolean intersection = false; double kl = 0.0; for (int i = 0; i < x.length; i++) { if (x[i] != 0.0 && y[i] != 0.0) { intersection = true; kl += x[i] * Math.log(x[i] / y[i]); } } if (intersection) { return kl; } else { return Double.POSITIVE_INFINITY; } } /** * Kullback-Leibler divergence. The Kullback-Leibler divergence (also * information divergence, information gain, relative entropy, or KLIC) * is a non-symmetric measure of the difference between two probability * distributions P and Q. KL measures the expected number of extra bits * required to code samples from P when using a code based on Q, rather * than using a code based on P. Typically P represents the "true" * distribution of data, observations, or a precise calculated theoretical * distribution. The measure Q typically represents a theory, model, * description, or approximation of P. *

* Although it is often intuited as a distance metric, the KL divergence is * not a true metric - for example, the KL from P to Q is not necessarily * the same as the KL from Q to P. */ public static double KullbackLeiblerDivergence(SparseArray x, SparseArray y) { if (x.isEmpty()) { throw new IllegalArgumentException("List x is empty."); } if (y.isEmpty()) { throw new IllegalArgumentException("List y is empty."); } Iterator iterX = x.iterator(); Iterator iterY = y.iterator(); SparseArray.Entry a = iterX.hasNext() ? iterX.next() : null; SparseArray.Entry b = iterY.hasNext() ? iterY.next() : null; boolean intersection = false; double kl = 0.0; while (a != null && b != null) { if (a.i < b.i) { a = iterX.hasNext() ? iterX.next() : null; } else if (a.i > b.i) { b = iterY.hasNext() ? iterY.next() : null; } else { intersection = true; kl += a.x * Math.log(a.x / b.x); a = iterX.hasNext() ? iterX.next() : null; b = iterY.hasNext() ? iterY.next() : null; } } if (intersection) { return kl; } else { return Double.POSITIVE_INFINITY; } } /** * Kullback-Leibler divergence. The Kullback-Leibler divergence (also * information divergence, information gain, relative entropy, or KLIC) * is a non-symmetric measure of the difference between two probability * distributions P and Q. KL measures the expected number of extra bits * required to code samples from P when using a code based on Q, rather * than using a code based on P. Typically P represents the "true" * distribution of data, observations, or a precise calculated theoretical * distribution. The measure Q typically represents a theory, model, * description, or approximation of P. *

* Although it is often intuited as a distance metric, the KL divergence is * not a true metric - for example, the KL from P to Q is not necessarily * the same as the KL from Q to P. */ public static double KullbackLeiblerDivergence(double[] x, SparseArray y) { return KullbackLeiblerDivergence(y, x); } /** * Kullback-Leibler divergence. The Kullback-Leibler divergence (also * information divergence, information gain, relative entropy, or KLIC) * is a non-symmetric measure of the difference between two probability * distributions P and Q. KL measures the expected number of extra bits * required to code samples from P when using a code based on Q, rather * than using a code based on P. Typically P represents the "true" * distribution of data, observations, or a precise calculated theoretical * distribution. The measure Q typically represents a theory, model, * description, or approximation of P. *

* Although it is often intuited as a distance metric, the KL divergence is * not a true metric - for example, the KL from P to Q is not necessarily * the same as the KL from Q to P. */ public static double KullbackLeiblerDivergence(SparseArray x, double[] y) { if (x.isEmpty()) { throw new IllegalArgumentException("List x is empty."); } Iterator iter = x.iterator(); boolean intersection = false; double kl = 0.0; while (iter.hasNext()) { SparseArray.Entry b = iter.next(); int i = b.i; if (y[i] > 0) { intersection = true; kl += b.x * Math.log(b.x / y[i]); } } if (intersection) { return kl; } else { return Double.POSITIVE_INFINITY; } } /** * Jensen-Shannon divergence JS(P||Q) = (KL(P||M) + KL(Q||M)) / 2, where * M = (P+Q)/2. The Jensen-Shannon divergence is a popular * method of measuring the similarity between two probability distributions. * It is also known as information radius or total divergence to the average. * It is based on the Kullback-Leibler divergence, with the difference that * it is always a finite value. The square root of the Jensen-Shannon divergence * is a metric. */ public static double JensenShannonDivergence(double[] x, double[] y) { double[] m = new double[x.length]; for (int i = 0; i < m.length; i++) { m[i] = (x[i] + y[i]) / 2; } return (KullbackLeiblerDivergence(x, m) + KullbackLeiblerDivergence(y, m)) / 2; } /** * Jensen-Shannon divergence JS(P||Q) = (KL(P||M) + KL(Q||M)) / 2, where * M = (P+Q)/2. The Jensen-Shannon divergence is a popular * method of measuring the similarity between two probability distributions. * It is also known as information radius or total divergence to the average. * It is based on the Kullback-Leibler divergence, with the difference that * it is always a finite value. The square root of the Jensen-Shannon divergence * is a metric. */ public static double JensenShannonDivergence(SparseArray x, SparseArray y) { if (x.isEmpty()) { throw new IllegalArgumentException("List x is empty."); } if (y.isEmpty()) { throw new IllegalArgumentException("List y is empty."); } Iterator iterX = x.iterator(); Iterator iterY = y.iterator(); SparseArray.Entry a = iterX.hasNext() ? iterX.next() : null; SparseArray.Entry b = iterY.hasNext() ? iterY.next() : null; double js = 0.0; while (a != null && b != null) { if (a.i < b.i) { double mi = a.x / 2; js += a.x * Math.log(a.x / mi); a = iterX.hasNext() ? iterX.next() : null; } else if (a.i > b.i) { double mi = b.x / 2; js += b.x * Math.log(b.x / mi); b = iterY.hasNext() ? iterY.next() : null; } else { double mi = (a.x + b.x) / 2; js += a.x * Math.log(a.x / mi) + b.x * Math.log(b.x / mi); a = iterX.hasNext() ? iterX.next() : null; b = iterY.hasNext() ? iterY.next() : null; } } return js / 2; } /** * Jensen-Shannon divergence JS(P||Q) = (KL(P||M) + KL(Q||M)) / 2, where * M = (P+Q)/2. The Jensen-Shannon divergence is a popular * method of measuring the similarity between two probability distributions. * It is also known as information radius or total divergence to the average. * It is based on the Kullback-Leibler divergence, with the difference that * it is always a finite value. The square root of the Jensen-Shannon divergence * is a metric. */ public static double JensenShannonDivergence(double[] x, SparseArray y) { return JensenShannonDivergence(y, x); } /** * Jensen-Shannon divergence JS(P||Q) = (KL(P||M) + KL(Q||M)) / 2, where * M = (P+Q)/2. The Jensen-Shannon divergence is a popular * method of measuring the similarity between two probability distributions. * It is also known as information radius or total divergence to the average. * It is based on the Kullback-Leibler divergence, with the difference that * it is always a finite value. The square root of the Jensen-Shannon divergence * is a metric. */ public static double JensenShannonDivergence(SparseArray x, double[] y) { if (x.isEmpty()) { throw new IllegalArgumentException("List x is empty."); } Iterator iter = x.iterator(); double js = 0.0; while (iter.hasNext()) { SparseArray.Entry b = iter.next(); int i = b.i; double mi = (b.x + y[i]) / 2; js += b.x * Math.log(b.x / mi); if (y[i] > 0) { js += y[i] * Math.log(y[i] / mi); } } return js / 2; } /** * Returns the dot product between two vectors. */ public static double dot(int[] x, int[] y) { if (x.length != y.length) { throw new IllegalArgumentException("Arrays have different length."); } double p = 0.0; for (int i = 0; i < x.length; i++) { p += x[i] * y[i]; } return p; } /** * Returns the dot product between two vectors. */ public static double dot(float[] x, float[] y) { if (x.length != y.length) { throw new IllegalArgumentException("Arrays have different length."); } double p = 0.0; for (int i = 0; i < x.length; i++) { p += x[i] * y[i]; } return p; } /** * Returns the dot product between two vectors. */ public static double dot(double[] x, double[] y) { if (x.length != y.length) { throw new IllegalArgumentException("Arrays have different length."); } double p = 0.0; for (int i = 0; i < x.length; i++) { p += x[i] * y[i]; } return p; } /** * Returns the dot product between two sparse arrays. */ public static double dot(SparseArray x, SparseArray y) { Iterator it1 = x.iterator(); Iterator it2 = y.iterator(); SparseArray.Entry e1 = it1.hasNext() ? it1.next() : null; SparseArray.Entry e2 = it2.hasNext() ? it2.next() : null; double s = 0.0; while (e1 != null && e2 != null) { if (e1.i == e2.i) { s += e1.x * e2.x; e1 = it1.hasNext() ? it1.next() : null; e2 = it2.hasNext() ? it2.next() : null; } else if (e1.i > e2.i) { e2 = it2.hasNext() ? it2.next() : null; } else { e1 = it1.hasNext() ? it1.next() : null; } } return s; } /** * Returns the covariance between two vectors. */ public static double cov(int[] x, int[] y) { if (x.length != y.length) { throw new IllegalArgumentException("Arrays have different length."); } if (x.length < 3) { throw new IllegalArgumentException("array length has to be at least 3."); } double mx = mean(x); double my = mean(y); double Sxy = 0.0; for (int i = 0; i < x.length; i++) { double dx = x[i] - mx; double dy = y[i] - my; Sxy += dx * dy; } return Sxy / (x.length - 1); } /** * Returns the covariance between two vectors. */ public static double cov(float[] x, float[] y) { if (x.length != y.length) { throw new IllegalArgumentException("Arrays have different length."); } if (x.length < 3) { throw new IllegalArgumentException("array length has to be at least 3."); } double mx = mean(x); double my = mean(y); double Sxy = 0.0; for (int i = 0; i < x.length; i++) { double dx = x[i] - mx; double dy = y[i] - my; Sxy += dx * dy; } return Sxy / (x.length - 1); } /** * Returns the covariance between two vectors. */ public static double cov(double[] x, double[] y) { if (x.length != y.length) { throw new IllegalArgumentException("Arrays have different length."); } if (x.length < 3) { throw new IllegalArgumentException("array length has to be at least 3."); } double mx = mean(x); double my = mean(y); double Sxy = 0.0; for (int i = 0; i < x.length; i++) { double dx = x[i] - mx; double dy = y[i] - my; Sxy += dx * dy; } return Sxy / (x.length - 1); } /** * Returns the sample covariance matrix. */ public static double[][] cov(double[][] data) { return cov(data, Math.colMean(data)); } /** * Returns the sample covariance matrix. * @param mu the known mean of data. */ public static double[][] cov(double[][] data, double[] mu) { double[][] sigma = new double[data[0].length][data[0].length]; for (int i = 0; i < data.length; i++) { for (int j = 0; j < mu.length; j++) { for (int k = 0; k <= j; k++) { sigma[j][k] += (data[i][j] - mu[j]) * (data[i][k] - mu[k]); } } } int n = data.length - 1; for (int j = 0; j < mu.length; j++) { for (int k = 0; k <= j; k++) { sigma[j][k] /= n; sigma[k][j] = sigma[j][k]; } } return sigma; } /** * Returns the correlation coefficient between two vectors. */ public static double cor(int[] x, int[] y) { if (x.length != y.length) { throw new IllegalArgumentException("Arrays have different length."); } if (x.length < 3) { throw new IllegalArgumentException("array length has to be at least 3."); } double Sxy = cov(x, y); double Sxx = var(x); double Syy = var(y); if (Sxx == 0 || Syy == 0) { return Double.NaN; } return Sxy / java.lang.Math.sqrt(Sxx * Syy); } /** * Returns the correlation coefficient between two vectors. */ public static double cor(float[] x, float[] y) { if (x.length != y.length) { throw new IllegalArgumentException("Arrays have different length."); } if (x.length < 3) { throw new IllegalArgumentException("array length has to be at least 3."); } double Sxy = cov(x, y); double Sxx = var(x); double Syy = var(y); if (Sxx == 0 || Syy == 0) { return Double.NaN; } return Sxy / java.lang.Math.sqrt(Sxx * Syy); } /** * Returns the correlation coefficient between two vectors. */ public static double cor(double[] x, double[] y) { if (x.length != y.length) { throw new IllegalArgumentException("Arrays have different length."); } if (x.length < 3) { throw new IllegalArgumentException("array length has to be at least 3."); } double Sxy = cov(x, y); double Sxx = var(x); double Syy = var(y); if (Sxx == 0 || Syy == 0) { return Double.NaN; } return Sxy / java.lang.Math.sqrt(Sxx * Syy); } /** * Returns the sample correlation matrix. */ public static double[][] cor(double[][] data) { return cor(data, Math.colMean(data)); } /** * Returns the sample correlation matrix. * @param mu the known mean of data. */ public static double[][] cor(double[][] data, double[] mu) { double[][] sigma = cov(data, mu); int n = data[0].length; double[] sd = new double[n]; for (int i = 0; i < n; i++) { sd[i] = sqrt(sigma[i][i]); } for (int i = 0; i < n; i++) { for (int j = 0; j <= i; j++) { sigma[i][j] /= sd[i] * sd[j]; sigma[j][i] = sigma[i][j]; } } return sigma; } /** * Given a sorted array, replaces the elements by their rank, including * midranking of ties, and returns as s the sum of f3 - f, where * f is the number of elements in each tie. */ private static double crank(double[] w) { int n = w.length; double s = 0.0; int j = 1; while (j < n) { if (w[j] != w[j - 1]) { w[j - 1] = j; ++j; } else { int jt = j + 1; while (jt <= n && w[jt - 1] == w[j - 1]) { jt++; } double rank = 0.5 * (j + jt - 1); for (int ji = j; ji <= (jt - 1); ji++) { w[ji - 1] = rank; } double t = jt - j; s += (t * t * t - t); j = jt; } } if (j == n) { w[n - 1] = n; } return s; } /** * The Spearman Rank Correlation Coefficient is a form of the Pearson * coefficient with the data converted to rankings (ie. when variables * are ordinal). It can be used when there is non-parametric data and hence * Pearson cannot be used. */ public static double spearman(int[] x, int[] y) { if (x.length != y.length) { throw new IllegalArgumentException("Input vector sizes are different."); } int n = x.length; double[] wksp1 = new double[n]; double[] wksp2 = new double[n]; for (int j = 0; j < n; j++) { wksp1[j] = x[j]; wksp2[j] = y[j]; } QuickSort.sort(wksp1, wksp2); double sf = crank(wksp1); QuickSort.sort(wksp2, wksp1); double sg = crank(wksp2); double d = 0.0; for (int j = 0; j < n; j++) { d += Math.sqr(wksp1[j] - wksp2[j]); } int en = n; double en3n = en * en * en - en; double fac = (1.0 - sf / en3n) * (1.0 - sg / en3n); double rs = (1.0 - (6.0 / en3n) * (d + (sf + sg) / 12.0)) / Math.sqrt(fac); return rs; } /** * The Spearman Rank Correlation Coefficient is a form of the Pearson * coefficient with the data converted to rankings (ie. when variables * are ordinal). It can be used when there is non-parametric data and hence * Pearson cannot be used. */ public static double spearman(float[] x, float[] y) { if (x.length != y.length) { throw new IllegalArgumentException("Input vector sizes are different."); } int n = x.length; double[] wksp1 = new double[n]; double[] wksp2 = new double[n]; for (int j = 0; j < n; j++) { wksp1[j] = x[j]; wksp2[j] = y[j]; } QuickSort.sort(wksp1, wksp2); double sf = crank(wksp1); QuickSort.sort(wksp2, wksp1); double sg = crank(wksp2); double d = 0.0; for (int j = 0; j < n; j++) { d += Math.sqr(wksp1[j] - wksp2[j]); } int en = n; double en3n = en * en * en - en; double fac = (1.0 - sf / en3n) * (1.0 - sg / en3n); double rs = (1.0 - (6.0 / en3n) * (d + (sf + sg) / 12.0)) / Math.sqrt(fac); return rs; } /** * The Spearman Rank Correlation Coefficient is a form of the Pearson * coefficient with the data converted to rankings (ie. when variables * are ordinal). It can be used when there is non-parametric data and hence * Pearson cannot be used. */ public static double spearman(double[] x, double[] y) { if (x.length != y.length) { throw new IllegalArgumentException("Input vector sizes are different."); } int n = x.length; double[] wksp1 = new double[n]; double[] wksp2 = new double[n]; for (int j = 0; j < n; j++) { wksp1[j] = x[j]; wksp2[j] = y[j]; } QuickSort.sort(wksp1, wksp2); double sf = crank(wksp1); QuickSort.sort(wksp2, wksp1); double sg = crank(wksp2); double d = 0.0; for (int j = 0; j < n; j++) { d += Math.sqr(wksp1[j] - wksp2[j]); } int en = n; double en3n = en * en * en - en; double fac = (1.0 - sf / en3n) * (1.0 - sg / en3n); double rs = (1.0 - (6.0 / en3n) * (d + (sf + sg) / 12.0)) / Math.sqrt(fac); return rs; } /** * The Kendall Tau Rank Correlation Coefficient is used to measure the * degree of correspondence between sets of rankings where the measures * are not equidistant. It is used with non-parametric data. */ public static double kendall(int[] x, int[] y) { if (x.length != y.length) { throw new IllegalArgumentException("Input vector sizes are different."); } int is = 0, n2 = 0, n1 = 0, n = x.length; double aa, a2, a1; for (int j = 0; j < n - 1; j++) { for (int k = j + 1; k < n; k++) { a1 = x[j] - x[k]; a2 = y[j] - y[k]; aa = a1 * a2; if (aa != 0.0) { ++n1; ++n2; if (aa > 0) { ++is; } else { --is; } } else { if (a1 != 0.0) { ++n1; } if (a2 != 0.0) { ++n2; } } } } double tau = is / (Math.sqrt(n1) * Math.sqrt(n2)); return tau; } /** * The Kendall Tau Rank Correlation Coefficient is used to measure the * degree of correspondence between sets of rankings where the measures * are not equidistant. It is used with non-parametric data. */ public static double kendall(float[] x, float[] y) { if (x.length != y.length) { throw new IllegalArgumentException("Input vector sizes are different."); } int is = 0, n2 = 0, n1 = 0, n = x.length; double aa, a2, a1; for (int j = 0; j < n - 1; j++) { for (int k = j + 1; k < n; k++) { a1 = x[j] - x[k]; a2 = y[j] - y[k]; aa = a1 * a2; if (aa != 0.0) { ++n1; ++n2; if (aa > 0) { ++is; } else { --is; } } else { if (a1 != 0.0) { ++n1; } if (a2 != 0.0) { ++n2; } } } } double tau = is / (Math.sqrt(n1) * Math.sqrt(n2)); return tau; } /** * The Kendall Tau Rank Correlation Coefficient is used to measure the * degree of correspondence between sets of rankings where the measures * are not equidistant. It is used with non-parametric data. */ public static double kendall(double[] x, double[] y) { if (x.length != y.length) { throw new IllegalArgumentException("Input vector sizes are different."); } int is = 0, n2 = 0, n1 = 0, n = x.length; double aa, a2, a1; for (int j = 0; j < n - 1; j++) { for (int k = j + 1; k < n; k++) { a1 = x[j] - x[k]; a2 = y[j] - y[k]; aa = a1 * a2; if (aa != 0.0) { ++n1; ++n2; if (aa > 0) { ++is; } else { --is; } } else { if (a1 != 0.0) { ++n1; } if (a2 != 0.0) { ++n2; } } } } double tau = is / (Math.sqrt(n1) * Math.sqrt(n2)); return tau; } /** * L1 vector norm. */ public static double norm1(double[] x) { double norm = 0.0; for (double n : x) { norm += Math.abs(n); } return norm; } /** * L2 vector norm. */ public static double norm2(double[] x) { double norm = 0.0; for (double n : x) { norm += n * n; } norm = Math.sqrt(norm); return norm; } /** * L-infinity vector norm. Maximum absolute value. */ public static double normInf(double[] x) { int n = x.length; double f = Math.abs(x[0]); for (int i = 1; i < n; i++) { f = Math.max(f, Math.abs(x[i])); } return f; } /** * L2 vector norm. */ public static double norm(double[] x) { return norm2(x); } /** * L1 matrix norm. Maximum column sum. */ public static double norm1(double[][] x) { int m = x.length; int n = x[0].length; double f = 0.0; for (int j = 0; j < n; j++) { double s = 0.0; for (int i = 0; i < m; i++) { s += Math.abs(x[i][j]); } f = Math.max(f, s); } return f; } /** * L2 matrix norm. Maximum singular value. */ public static double norm2(double[][] x) { return SingularValueDecomposition.decompose(x).norm(); } /** * L2 matrix norm. Maximum singular value. */ public static double norm(double[][] x) { return norm2(x); } /** * Infinity matrix norm. Maximum row sum. */ public static double normInf(double[][] x) { int m = x.length; double f = 0.0; for (int i = 0; i < m; i++) { double s = norm1(x[i]); f = Math.max(f, s); } return f; } /** * Frobenius matrix norm. Sqrt of sum of squares of all elements. */ public static double normFro(double[][] x) { int m = x.length; int n = x[0].length; double f = 0.0; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { f = Math.hypot(f, x[i][j]); } } return f; } /** * Normalizes an array to mean 0 and variance 1. */ public static void normalize(double[] x) { double mu = mean(x); double sigma = sd(x); if (sigma <= 0) { throw new IllegalArgumentException("array has variance of 0."); } for (int i = 0; i < x.length; i++) { x[i] = (x[i] - mu) / sigma; } } /** * Normalizes each column of a matrix to mean 0 and variance 1. */ public static void normalize(double[][] x) { int n = x.length; int p = x[0].length; for (int j = 0; j < p; j++) { double mu = 0.0; double sd = 0.0; for (int i = 0; i < n; i++) { mu += x[i][j]; sd += x[i][j] * x[i][j]; } sd = Math.sqrt(sd / (n-1) - (mu / n) * (mu / (n-1))); mu /= n; if (sd <= 0) { throw new IllegalArgumentException(String.format("Column %d has variance of 0.", j)); } for (int i = 0; i < n; i++) { x[i][j] = (x[i][j] - mu) / sd; } } } /** * Unitize an array so that L2 norm of x = 1. * * @param x the array of double */ public static void unitize(double[] x) { unitize2(x); } /** * Unitize an array so that L1 norm of x is 1. * * @param x an array of nonnegative double */ public static void unitize1(double[] x) { double n = norm1(x); for (int i = 0; i < x.length; i++) { x[i] /= n; } } /** * Unitize an array so that L2 norm of x = 1. * * @param x the array of double */ public static void unitize2(double[] x) { double n = norm(x); for (int i = 0; i < x.length; i++) { x[i] /= n; } } /** * Returns the fitted linear function value y = intercept + slope * log(x). */ private static double smoothed(int x, double slope, double intercept) { return Math.exp(intercept + slope * Math.log(x)); } /** * Returns the index of given frequency. * @param r the frequency list. * @param f the given frequency. * @return the index of given frequency or -1 if it doesn't exist in the list. */ private static int row(int[] r, int f) { int i = 0; while (i < r.length && r[i] < f) { ++i; } return ((i < r.length && r[i] == f) ? i : -1); } /** * Takes a set of (frequency, frequency-of-frequency) pairs, and applies * the "Simple Good-Turing" technique for estimating the probabilities * corresponding to the observed frequencies, and P0, the joint * probability of all unobserved species. * @param r the frequency in ascending order. * @param Nr the frequency of frequencies. * @param p on output, it is the estimated probabilities. * @return P0 for all unobserved species. */ public static double GoodTuring(int[] r, int[] Nr, double[] p) { final double CONFID_FACTOR = 1.96; if (r.length != Nr.length) { throw new IllegalArgumentException("The sizes of r and Nr are not same."); } int len = r.length; double[] logR = new double[len]; double[] logZ = new double[len]; double[] Z = new double[len]; int N = 0; for (int j = 0; j < len; ++j) { N += r[j] * Nr[j]; } int n1 = (r[0] != 1) ? 0 : Nr[0]; double p0 = n1 / (double) N; for (int j = 0; j < len; ++j) { int q = j == 0 ? 0 : r[j - 1]; int t = j == len - 1 ? 2 * r[j] - q : r[j + 1]; Z[j] = 2.0 * Nr[j] / (t - q); logR[j] = Math.log(r[j]); logZ[j] = Math.log(Z[j]); } // Simple linear regression. double XYs = 0.0, Xsquares = 0.0, meanX = 0.0, meanY = 0.0; for (int i = 0; i < len; ++i) { meanX += logR[i]; meanY += logZ[i]; } meanX /= len; meanY /= len; for (int i = 0; i < len; ++i) { XYs += (logR[i] - meanX) * (logZ[i] - meanY); Xsquares += Math.sqr(logR[i] - meanX); } double slope = XYs / Xsquares; double intercept = meanY - slope * meanX; boolean indiffValsSeen = false; for (int j = 0; j < len; ++j) { double y = (r[j] + 1) * smoothed(r[j] + 1, slope, intercept) / smoothed(r[j], slope, intercept); if (row(r, r[j] + 1) < 0) { indiffValsSeen = true; } if (!indiffValsSeen) { int n = Nr[row(r, r[j] + 1)]; double x = (r[j] + 1) * n / (double) Nr[j]; if (Math.abs(x - y) <= CONFID_FACTOR * Math.sqrt(Math.sqr(r[j] + 1.0) * n / Math.sqr(Nr[j]) * (1 + n / (double) Nr[j]))) { indiffValsSeen = true; } else { p[j] = x; } } if (indiffValsSeen) { p[j] = y; } } double Nprime = 0.0; for (int j = 0; j < len; ++j) { Nprime += Nr[j] * p[j]; } for (int j = 0; j < len; ++j) { p[j] = (1 - p0) * p[j] / Nprime; } return p0; } /** * Check if x element-wisely equals y. */ public static boolean equals(int[] x, int[] y) { if (x.length != y.length) { throw new IllegalArgumentException(String.format("Arrays have different length: x[%d], y[%d]", x.length, y.length)); } for (int i = 0; i < x.length; i++) { if (x[i] != y[i]) { return false; } } return true; } /** * Check if x element-wisely equals y with default epsilon 1E-7. */ public static boolean equals(float[] x, float[] y) { return equals(x, y, 1.0E-7f); } /** * Check if x element-wisely equals y. */ public static boolean equals(float[] x, float[] y, float epsilon) { if (x.length != y.length) { throw new IllegalArgumentException(String.format("Arrays have different length: x[%d], y[%d]", x.length, y.length)); } for (int i = 0; i < x.length; i++) { if (Math.abs(x[i] - y[i]) > epsilon) { return false; } } return true; } /** * Check if x element-wisely equals y with default epsilon 1E-10. */ public static boolean equals(double[] x, double[] y) { return equals(x, y, 1.0E-10); } /** * Check if x element-wisely equals y. */ public static boolean equals(double[] x, double[] y, double eps) { if (x.length != y.length) { throw new IllegalArgumentException(String.format("Arrays have different length: x[%d], y[%d]", x.length, y.length)); } if (eps <= 0.0) { throw new IllegalArgumentException("Invalid epsilon: " + eps); } for (int i = 0; i < x.length; i++) { if (Math.abs(x[i] - y[i]) > eps) { return false; } } return true; } /** * Check if x element-wisely equals y. */ public static > boolean equals(T[] x, T[] y) { if (x.length != y.length) { throw new IllegalArgumentException(String.format("Arrays have different length: x[%d], y[%d]", x.length, y.length)); } for (int i = 0; i < x.length; i++) { if (x[i].compareTo(y[i]) != 0) { return false; } } return true; } /** * Check if x element-wisely equals y. */ public static boolean equals(int[][] x, int[][] y) { if (x.length != y.length || x[0].length != y[0].length) { throw new IllegalArgumentException(String.format("Matrices have different rows: %d x %d vs %d x %d", x.length, x[0].length, y.length, y[0].length)); } for (int i = 0; i < x.length; i++) { for (int j = 0; j < x[i].length; j++) { if (x[i][j] != y[i][j]) { return false; } } } return true; } /** * Check if x element-wisely equals y with default epsilon 1E-7. */ public static boolean equals(float[][] x, float[][] y) { return equals(x, y, 1.0E-7f); } /** * Check if x element-wisely equals y. */ public static boolean equals(float[][] x, float[][] y, float epsilon) { if (x.length != y.length || x[0].length != y[0].length) { throw new IllegalArgumentException(String.format("Matrices have different rows: %d x %d vs %d x %d", x.length, x[0].length, y.length, y[0].length)); } for (int i = 0; i < x.length; i++) { for (int j = 0; j < x[i].length; j++) { if (Math.abs(x[i][j] - y[i][j]) > epsilon) { return false; } } } return true; } /** * Check if x element-wisely equals y with default epsilon 1E-10. */ public static boolean equals(double[][] x, double[][] y) { return equals(x, y, 1.0E-10); } /** * Check if x element-wisely equals y. */ public static boolean equals(double[][] x, double[][] y, double eps) { if (x.length != y.length || x[0].length != y[0].length) { throw new IllegalArgumentException(String.format("Matrices have different rows: %d x %d vs %d x %d", x.length, x[0].length, y.length, y[0].length)); } if (eps <= 0.0) { throw new IllegalArgumentException("Invalid epsilon: " + eps); } for (int i = 0; i < x.length; i++) { for (int j = 0; j < x[i].length; j++) { if (Math.abs(x[i][j] - y[i][j]) > eps) { return false; } } } return true; } /** * Check if x element-wisely equals y. */ public static > boolean equals(T[][] x, T[][] y) { if (x.length != y.length || x[0].length != y[0].length) { throw new IllegalArgumentException(String.format("Matrices have different rows: %d x %d vs %d x %d", x.length, x[0].length, y.length, y[0].length)); } for (int i = 0; i < x.length; i++) { for (int j = 0; j < x[i].length; j++) { if (x[i][j].compareTo(y[i][j]) != 0) { return false; } } } return true; } /** * Deep clone a two-dimensional array. */ public static int[][] clone(int[][] x) { int[][] matrix = new int[x.length][]; for (int i = 0; i < x.length; i++) { matrix[i] = x[i].clone(); } return matrix; } /** * Deep clone a two-dimensional array. */ public static float[][] clone(float[][] x) { float[][] matrix = new float[x.length][]; for (int i = 0; i < x.length; i++) { matrix[i] = x[i].clone(); } return matrix; } /** * Deep clone a two-dimensional array. */ public static double[][] clone(double[][] x) { double[][] matrix = new double[x.length][]; for (int i = 0; i < x.length; i++) { matrix[i] = x[i].clone(); } return matrix; } /** * Swap two elements of an array. */ public static void swap(int[] x, int i, int j) { int s = x[i]; x[i] = x[j]; x[j] = s; } /** * Swap two elements of an array. */ public static void swap(float[] x, int i, int j) { float s = x[i]; x[i] = x[j]; x[j] = s; } /** * Swap two elements of an array. */ public static void swap(double[] x, int i, int j) { double s = x[i]; x[i] = x[j]; x[j] = s; } /** * Swap two elements of an array. */ public static void swap(Object[] x, int i, int j) { Object s = x[i]; x[i] = x[j]; x[j] = s; } /** * Swap two arrays. */ public static void swap(int[] x, int[] y) { if (x.length != y.length) { throw new IllegalArgumentException(String.format("Arrays have different length: x[%d], y[%d]", x.length, y.length)); } for (int i = 0; i < x.length; i++) { int s = x[i]; x[i] = y[i]; y[i] = s; } } /** * Swap two arrays. */ public static void swap(float[] x, float[] y) { if (x.length != y.length) { throw new IllegalArgumentException(String.format("Arrays have different length: x[%d], y[%d]", x.length, y.length)); } for (int i = 0; i < x.length; i++) { float s = x[i]; x[i] = y[i]; y[i] = s; } } /** * Swap two arrays. */ public static void swap(double[] x, double[] y) { if (x.length != y.length) { throw new IllegalArgumentException(String.format("Arrays have different length: x[%d], y[%d]", x.length, y.length)); } for (int i = 0; i < x.length; i++) { double s = x[i]; x[i] = y[i]; y[i] = s; } } /** * Swap two arrays. */ public static void swap(E[] x, E[] y) { if (x.length != y.length) { throw new IllegalArgumentException(String.format("Arrays have different length: x[%d], y[%d]", x.length, y.length)); } for (int i = 0; i < x.length; i++) { E s = x[i]; x[i] = y[i]; y[i] = s; } } /** * Copy x into y. */ public static void copy(int[] x, int[] y) { if (x.length != y.length) { throw new IllegalArgumentException(String.format("Arrays have different length: x[%d], y[%d]", x.length, y.length)); } System.arraycopy(x, 0, y, 0, x.length); } /** * Copy x into y. */ public static void copy(float[] x, float[] y) { if (x.length != y.length) { throw new IllegalArgumentException(String.format("Arrays have different length: x[%d], y[%d]", x.length, y.length)); } System.arraycopy(x, 0, y, 0, x.length); } /** * Copy x into y. */ public static void copy(double[] x, double[] y) { if (x.length != y.length) { throw new IllegalArgumentException(String.format("Arrays have different length: x[%d], y[%d]", x.length, y.length)); } System.arraycopy(x, 0, y, 0, x.length); } /** * Copy x into y. */ public static void copy(int[][] x, int[][] y) { if (x.length != y.length || x[0].length != y[0].length) { throw new IllegalArgumentException(String.format("Matrices have different rows: %d x %d vs %d x %d", x.length, x[0].length, y.length, y[0].length)); } for (int i = 0; i < x.length; i++) { System.arraycopy(x[i], 0, y[i], 0, x[i].length); } } /** * Copy x into y. */ public static void copy(float[][] x, float[][] y) { if (x.length != y.length || x[0].length != y[0].length) { throw new IllegalArgumentException(String.format("Matrices have different rows: %d x %d vs %d x %d", x.length, x[0].length, y.length, y[0].length)); } for (int i = 0; i < x.length; i++) { System.arraycopy(x[i], 0, y[i], 0, x[i].length); } } /** * Copy x into y. */ public static void copy(double[][] x, double[][] y) { if (x.length != y.length || x[0].length != y[0].length) { throw new IllegalArgumentException(String.format("Matrices have different rows: %d x %d vs %d x %d", x.length, x[0].length, y.length, y[0].length)); } for (int i = 0; i < x.length; i++) { System.arraycopy(x[i], 0, y[i], 0, x[i].length); } } /** * Element-wise sum of two arrays y = x + y. */ public static void plus(double[] y, double[] x) { if (x.length != y.length) { throw new IllegalArgumentException(String.format("Arrays have different length: x[%d], y[%d]", x.length, y.length)); } for (int i = 0; i < x.length; i++) { y[i] += x[i]; } } /** * Element-wise sum of two matrices y = x + y. */ public static void plus(double[][] y, double[][] x) { if (x.length != y.length || x[0].length != y[0].length) { throw new IllegalArgumentException(String.format("Matrices have different rows: %d x %d vs %d x %d", x.length, x[0].length, y.length, y[0].length)); } for (int i = 0; i < x.length; i++) { plus(y[i], x[i]); } } /** * Element-wise subtraction of two arrays y = y - x. * @param y minuend matrix * @param x subtrahend matrix */ public static void minus(double[] y, double[] x) { if (x.length != y.length) { throw new IllegalArgumentException(String.format("Arrays have different length: x[%d], y[%d]", x.length, y.length)); } for (int i = 0; i < x.length; i++) { y[i] -= x[i]; } } /** * Element-wise subtraction of two matrices y = y - x. * @param y minuend matrix * @param x subtrahend matrix */ public static void minus(double[][] y, double[][] x) { if (x.length != y.length || x[0].length != y[0].length) { throw new IllegalArgumentException(String.format("Matrices have different rows: %d x %d vs %d x %d", x.length, x[0].length, y.length, y[0].length)); } for (int i = 0; i < x.length; i++) { minus(y[i], x[i]); } } /** * Scale each element of an array by a constant x = a * x. */ public static void scale(double a, double[] x) { for (int i = 0; i < x.length; i++) { x[i] *= a; } } /** * Scale each element of an array by a constant y = a * x. */ public static void scale(double a, double[] x, double[] y) { for (int i = 0; i < x.length; i++) { y[i] = a * x[i]; } } /** * Update an array by adding a multiple of another array y = a * x + y. */ public static void axpy(double a, double[] x, double[] y) { if (x.length != y.length) { throw new IllegalArgumentException(String.format("Arrays have different length: x[%d], y[%d]", x.length, y.length)); } for (int i = 0; i < x.length; i++) { y[i] += a * x[i]; } } /** * Product of a matrix and a vector y = A * x according to the rules of linear algebra. * Number of columns in A must equal number of elements in x. */ public static void ax(double[][] A, double[] x, double[] y) { if (A[0].length != x.length) { throw new IllegalArgumentException(String.format("Array dimensions do not match for matrix multiplication: %dx%d vs %dx1", A.length, A[0].length, x.length)); } if (A.length != y.length) { throw new IllegalArgumentException(String.format("Array dimensions do not match")); } Arrays.fill(y, 0.0); for (int i = 0; i < y.length; i++) { for (int k = 0; k < A[i].length; k++) { y[i] += A[i][k] * x[k]; } } } /** * Product of a matrix and a vector y = A * x + y according to the rules of linear algebra. * Number of columns in A must equal number of elements in x. */ public static void axpy(double[][] A, double[] x, double[] y) { if (A[0].length != x.length) { throw new IllegalArgumentException(String.format("Array dimensions do not match for matrix multiplication: %dx%d vs %dx1", A.length, A[0].length, x.length)); } if (A.length != y.length) { throw new IllegalArgumentException(String.format("Array dimensions do not match")); } for (int i = 0; i < y.length; i++) { for (int k = 0; k < A[i].length; k++) { y[i] += A[i][k] * x[k]; } } } /** * Product of a matrix and a vector y = A * x + b * y according to the rules of linear algebra. * Number of columns in A must equal number of elements in x. */ public static void axpy(double[][] A, double[] x, double[] y, double b) { if (A[0].length != x.length) { throw new IllegalArgumentException(String.format("Array dimensions do not match for matrix multiplication: %dx%d vs %dx1", A.length, A[0].length, x.length)); } if (A.length != y.length) { throw new IllegalArgumentException(String.format("Array dimensions do not match")); } for (int i = 0; i < y.length; i++) { y[i] *= b; for (int k = 0; k < A[i].length; k++) { y[i] += A[i][k] * x[k]; } } } /** * Product of a matrix and a vector y = AT * x according to the rules of linear algebra. * Number of elements in x must equal number of rows in A. */ public static void atx(double[][] A, double[] x, double[] y) { if (A.length != x.length) { throw new IllegalArgumentException(String.format("Array dimensions do not match for matrix multiplication: %d x %d vs 1 x %d", A.length, A[0].length, x.length)); } if (A[0].length != y.length) { throw new IllegalArgumentException(String.format("Array dimensions do not match")); } Arrays.fill(y, 0.0); for (int i = 0; i < y.length; i++) { for (int k = 0; k < x.length; k++) { y[i] += x[k] * A[k][i]; } } } /** * Product of a matrix and a vector y = AT * x + y according to the rules of linear algebra. * Number of elements in x must equal number of rows in A. */ public static void atxpy(double[][] A, double[] x, double[] y) { if (A.length != x.length) { throw new IllegalArgumentException(String.format("Array dimensions do not match for matrix multiplication: 1 x %d vs %d x %d", x.length, A.length, A[0].length)); } if (A[0].length != y.length) { throw new IllegalArgumentException(String.format("Array dimensions do not match")); } for (int i = 0; i < y.length; i++) { for (int k = 0; k < x.length; k++) { y[i] += x[k] * A[k][i]; } } } /** * Product of a matrix and a vector y = AT * x + b * y according to the rules of linear algebra. * Number of elements in x must equal number of rows in A. */ public static void atxpy(double[][] A, double[] x, double[] y, double b) { if (A.length != x.length) { throw new IllegalArgumentException(String.format("Array dimensions do not match for matrix multiplication: 1 x %d vs %d x %d", x.length, A.length, A[0].length)); } if (A[0].length != y.length) { throw new IllegalArgumentException(String.format("Array dimensions do not match")); } for (int i = 0; i < y.length; i++) { y[i] *= b; for (int k = 0; k < x.length; k++) { y[i] += x[k] * A[k][i]; } } } /** * Returns x' * A * x. */ public static double xax(double[][] A, double[] x) { if (A.length != A[0].length) { throw new IllegalArgumentException("The matrix is not square"); } if (A.length != x.length) { throw new IllegalArgumentException(String.format("x' * A * x: 1 x %d vs %d x %d", x.length, A.length, A[0].length)); } int n = A.length; double s = 0.0; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { s += A[i][j] * x[i] * x[j]; } } return s; } /** * Matrix multiplication A * A' according to the rules of linear algebra. */ public static double[][] aatmm(double[][] A) { int m = A.length; int n = A[0].length; double[][] C = new double[m][m]; for (int i = 0; i < m; i++) { for (int j = 0; j < m; j++) { for (int k = 0; k < n; k++) { C[i][j] += A[i][k] * A[j][k]; } } } return C; } /** * Matrix multiplication C = A * A' according to the rules of linear algebra. */ public static void aatmm(double[][] A, double[][] C) { int m = A.length; int n = A[0].length; for (int i = 0; i < m; i++) { for (int j = 0; j < m; j++) { for (int k = 0; k < n; k++) { C[i][j] += A[i][k] * A[j][k]; } } } } /** * Matrix multiplication A' * A according to the rules of linear algebra. */ public static double[][] atamm(double[][] A) { int m = A.length; int n = A[0].length; double[][] C = new double[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < m; k++) { C[i][j] += A[k][i] * A[k][j]; } } } return C; } /** * Matrix multiplication C = A' * A according to the rules of linear algebra. */ public static void atamm(double[][] A, double[][] C) { int m = A.length; int n = A[0].length; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < m; k++) { C[i][j] += A[k][i] * A[k][j]; } } } } /** * Matrix multiplication A * B according to the rules of linear algebra. */ public static double[][] abmm(double[][] A, double[][] B) { if (A[0].length != B.length) { throw new IllegalArgumentException(String.format("Matrix multiplication A * B: %d x %d vs %d x %d", A.length, A[0].length, B.length, B[0].length)); } int m = A.length; int n = B[0].length; int l = B.length; double[][] C = new double[m][n]; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < l; k++) { C[i][j] += A[i][k] * B[k][j]; } } } return C; } /** * Matrix multiplication C = A * B according to the rules of linear algebra. */ public static void abmm(double[][] A, double[][] B, double[][] C) { if (A[0].length != B.length) { throw new IllegalArgumentException(String.format("Matrix multiplication A * B: %d x %d vs %d x %d", A.length, A[0].length, B.length, B[0].length)); } int m = A.length; int n = B[0].length; int l = B.length; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < l; k++) { C[i][j] += A[i][k] * B[k][j]; } } } } /** * Matrix multiplication A' * B according to the rules of linear algebra. */ public static double[][] atbmm(double[][] A, double[][] B) { if (A.length != B.length) { throw new IllegalArgumentException(String.format("Matrix multiplication A' * B: %d x %d vs %d x %d", A.length, A[0].length, B.length, B[0].length)); } int m = A[0].length; int n = B[0].length; int l = B.length; double[][] C = new double[m][n]; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < l; k++) { C[i][j] += A[k][i] * B[k][j]; } } } return C; } /** * Matrix multiplication C = A' * B according to the rules of linear algebra. */ public static void atbmm(double[][] A, double[][] B, double[][] C) { if (A.length != B.length) { throw new IllegalArgumentException(String.format("Matrix multiplication A' * B: %d x %d vs %d x %d", A.length, A[0].length, B.length, B[0].length)); } int m = A[0].length; int n = B[0].length; int l = B.length; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < l; k++) { C[i][j] += A[k][i] * B[k][j]; } } } } /** * Matrix multiplication A * B' according to the rules of linear algebra. */ public static double[][] abtmm(double[][] A, double[][] B) { if (A[0].length != B[0].length) { throw new IllegalArgumentException(String.format("Matrix multiplication A * B': %d x %d vs %d x %d", A.length, A[0].length, B.length, B[0].length)); } int m = A.length; int n = B.length; int l = B[0].length; double[][] C = new double[m][n]; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < l; k++) { C[i][j] += A[i][k] * B[j][k]; } } } return C; } /** * Matrix multiplication C = A * B' according to the rules of linear algebra. */ public static void abtmm(double[][] A, double[][] B, double[][] C) { if (A[0].length != B[0].length) { throw new IllegalArgumentException(String.format("Matrix multiplication A * B': %d x %d vs %d x %d", A.length, A[0].length, B.length, B[0].length)); } int m = A.length; int n = B.length; int l = B[0].length; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < l; k++) { C[i][j] += A[i][k] * B[j][k]; } } } } /** * Matrix multiplication A' * B' according to the rules of linear algebra. */ public static double[][] atbtmm(double[][] A, double[][] B) { if (A.length != B[0].length) { throw new IllegalArgumentException(String.format("Matrix multiplication A' * B': %d x %d vs %d x %d", A.length, A[0].length, B.length, B[0].length)); } int m = A[0].length; int n = B.length; int l = A.length; double[][] C = new double[m][n]; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < l; k++) { C[i][j] += A[k][i] * B[j][k]; } } } return C; } /** * Matrix multiplication C = A' * B' according to the rules of linear algebra. */ public static void atbtmm(double[][] A, double[][] B, double[][] C) { if (A.length != B[0].length) { throw new IllegalArgumentException(String.format("Matrix multiplication A' * B': %d x %d vs %d x %d", A.length, A[0].length, B.length, B[0].length)); } int m = A[0].length; int n = B.length; int l = A.length; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < l; k++) { C[i][j] += A[k][i] * B[j][k]; } } } } /** * Raise each element of an array to a scalar power. * @param x array * @param n scalar exponent * @return xn */ public static double[] pow(double[] x, double n) { double[] array = new double[x.length]; for (int i = 0; i < x.length; i++) { array[i] = Math.pow(x[i], n); } return array; } /** * Raise each element of a matrix to a scalar power. * @param x matrix * @param n exponent * @return xn */ public static double[][] pow(double[][] x, double n) { double[][] array = new double[x.length][x[0].length]; for (int i = 0; i < x.length; i++) { for (int j = 0; j < x[i].length; j++) { array[i][j] = Math.pow(x[i][j], n); } } return array; } /** * Find unique elements of vector. * @param x an integer array. * @return the same values as in x but with no repetitions. */ public static int[] unique(int[] x) { HashSet hash = new HashSet(); for (int i = 0; i < x.length; i++) { hash.add(x[i]); } int[] y = new int[hash.size()]; Iterator keys = hash.iterator(); for (int i = 0; i < y.length; i++) { y[i] = keys.next(); } return y; } /** * Find unique elements of vector. * @param x an array of strings. * @return the same values as in x but with no repetitions. */ public static String[] unique(String[] x) { HashSet hash = new HashSet(Arrays.asList(x)); String[] y = new String[hash.size()]; Iterator keys = hash.iterator(); for (int i = 0; i < y.length; i++) { y[i] = keys.next(); } return y; } /** * Sorts each variable and returns the index of values in ascending order. * Note that the order of original array is NOT altered. * * @param x a set of variables to be sorted. Each row is an instance. Each * column is a variable. * @return the index of values in ascending order */ public static int[][] sort(double[][] x) { int n = x.length; int p = x[0].length; double[] a = new double[n]; int[][] index = new int[p][]; for (int j = 0; j < p; j++) { for (int i = 0; i < n; i++) { a[i] = x[i][j]; } index[j] = QuickSort.sort(a); } return index; } /** * Returns a square identity matrix of size n. * @return An n-by-n matrix with ones on the diagonal and zeros elsewhere. */ public static double[][] eye(int n) { double[][] x = new double[n][n]; for (int i = 0; i < n; i++) { x[i][i] = 1.0; } return x; } /** * Returns an identity matrix of size m by n. * @param m the number of rows. * @param n the number of columns. * @return an m-by-n matrix with ones on the diagonal and zeros elsewhere. */ public static double[][] eye(int m, int n) { double[][] x = new double[m][n]; int k = Math.min(m, n); for (int i = 0; i < k; i++) { x[i][i] = 1.0; } return x; } /** * Returns the matrix trace. The sum of the diagonal elements. */ public static double trace(double[][] A) { int n = Math.min(A.length, A[0].length); double t = 0.0; for (int i = 0; i < n; i++) { t += A[i][i]; } return t; } /** * Returns the matrix transpose. */ public static double[][] transpose(double[][] A) { int m = A.length; int n = A[0].length; double[][] matrix = new double[n][m]; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { matrix[j][i] = A[i][j]; } } return matrix; } /** * Returns the matrix inverse or pseudo inverse. * @return matrix inverse if A is square, pseudo inverse otherwise. */ public static double[][] inverse(double[][] A) { double[][] inv = eye(A[0].length, A.length); if (A.length == A[0].length) { LUDecomposition lu = new LUDecomposition(A, false); lu.solve(inv); } else { QRDecomposition qr = new QRDecomposition(A, false); qr.solve(inv); } return inv; } /** * Returns the matrix determinant */ public static double det(double[][] A) { if (A.length != A[0].length) { throw new IllegalArgumentException(String.format("Matrix is not square: %d x %d", A.length, A[0].length)); } LUDecomposition lu = new LUDecomposition(A, false); return lu.det(); } /** * Returns the matrix rank. Note that the input matrix will be altered. * @return Effective numerical rank. */ public static int rank(double[][] A) { return SingularValueDecomposition.decompose(A).rank(); } /** * Returns the largest eigen pair of matrix with the power iteration * under the assumptions A has an eigenvalue that is strictly greater * in magnitude than its other its other eigenvalues and the starting * vector has a nonzero component in the direction of an eigenvector * associated with the dominant eigenvalue. * @param v on input, it is the non-zero initial guess of the eigen vector. * On output, it is the eigen vector corresponding largest eigen value. * @return the largest eigen value. */ public static double eigen(double[][] A, double[] v) { return EigenValueDecomposition.eigen(new Matrix(A), v); } /** * Returns the largest eigen pair of matrix with the power iteration * under the assumptions A has an eigenvalue that is strictly greater * in magnitude than its other its other eigenvalues and the starting * vector has a nonzero component in the direction of an eigenvector * associated with the dominant eigenvalue. * @param v on input, it is the non-zero initial guess of the eigen vector. * On output, it is the eigen vector corresponding largest eigen value. * @param tol the desired convergence tolerance. * @return the largest eigen value. */ public static double eigen(double[][] A, double[] v, double tol) { return EigenValueDecomposition.eigen(new Matrix(A), v, tol); } /** * Returns the largest eigen pair of matrix with the power iteration * under the assumptions A has an eigenvalue that is strictly greater * in magnitude than its other its other eigenvalues and the starting * vector has a nonzero component in the direction of an eigenvector * associated with the dominant eigenvalue. * @param v on input, it is the non-zero initial guess of the eigen vector. * On output, it is the eigen vector corresponding largest eigen value. * @return the largest eigen value. */ public static double eigen(IMatrix A, double[] v) { return EigenValueDecomposition.eigen(A, v); } /** * Returns the largest eigen pair of matrix with the power iteration * under the assumptions A has an eigenvalue that is strictly greater * in magnitude than its other its other eigenvalues and the starting * vector has a nonzero component in the direction of an eigenvector * associated with the dominant eigenvalue. * @param v on input, it is the non-zero initial guess of the eigen vector. * On output, it is the eigen vector corresponding largest eigen value. * @param tol the desired convergence tolerance. * @return the largest eigen value. */ public static double eigen(IMatrix A, double[] v, double tol) { return EigenValueDecomposition.eigen(A, v, tol); } /** * Find k largest approximate eigen pairs of a symmetric matrix by an * iterative Lanczos algorithm. */ public static EigenValueDecomposition eigen(double[][] A, int k) { return EigenValueDecomposition.decompose(new Matrix(A), k); } /** * Returns the eigen value decomposition of a square matrix. Note that the input * matrix will be altered during decomposition. * @param A square matrix which will be altered after decomposition. */ public static EigenValueDecomposition eigen(double[][] A) { return EigenValueDecomposition.decompose(A); } /** * Returns the eigen value decomposition of a square matrix. Note that the input * matrix will be altered during decomposition. * @param A square matrix which will be altered after decomposition. * @param symmetric true if the matrix is assumed to be symmetric. */ public static EigenValueDecomposition eigen(double[][] A, boolean symmetric) { return EigenValueDecomposition.decompose(A, symmetric); } /** * Returns the eigen value decomposition of a square matrix. Note that the input * matrix will be altered during decomposition. * @param A square matrix which will be altered after decomposition. * @param symmetric true if the matrix is assumed to be symmetric. * @param onlyValues true if only compute eigenvalues; the default is to compute eigenvectors also. */ public static EigenValueDecomposition eigen(double[][] A, boolean symmetric, boolean onlyValues) { return EigenValueDecomposition.decompose(A, symmetric, onlyValues); } /** * Returns the singular value decomposition. Note that the input matrix * will be altered after decomposition. */ public static SingularValueDecomposition svd(double[][] A) { return SingularValueDecomposition.decompose(A); } /** * Solve A*x = b (exact solution if A is square, least squares * solution otherwise), which means the LU or QR decomposition will take * place in A and the results will be stored in b. * @return the solution, which is actually the vector b in case of exact solution. */ public static double[] solve(double[][] A, double[] b) { if (A.length == A[0].length) { LUDecomposition lu = new LUDecomposition(A, true); lu.solve(b); return b; } else { double[] x = new double[A[0].length]; QRDecomposition qr = new QRDecomposition(A, false); qr.solve(b, x); return x; } } /** * Solve A*X = B (exact solution if A is square, least squares * solution otherwise), which means the LU or QR decomposition will take * place in A and the results will be stored in B. * @return the solution, which is actually the matrix B in case of exact solution. */ public static double[][] solve(double[][] A, double[][] B) { if (A.length == A[0].length) { LUDecomposition lu = new LUDecomposition(A, true); lu.solve(B); return B; } else { double[][] X = new double[A[0].length][B[0].length]; QRDecomposition qr = new QRDecomposition(A, false); qr.solve(B, X); return X; } } /** * Solve the tridiagonal linear set which is of diagonal dominance * |bi| > |ai| + |ci|. *

     * | b0 c0  0  0  0 ...                        |
     * | a1 b1 c1  0  0 ...                        |
     * |  0 a2 b2 c2  0 ...                        |
     * |                ...                        |
     * |                ... a(n-2)  b(n-2)  c(n-2) |
     * |                ... 0       a(n-1)  b(n-1) |
     * 
* @param a the lower part of tridiagonal matrix. a[0] is undefined and not * referenced by the method. * @param b the diagonal of tridiagonal matrix. * @param c the upper of tridiagonal matrix. c[n-1] is undefined and not * referenced by the method. * @param r the right-hand side of linear equations. * @return the solution. */ public static double[] solve(double[] a, double[] b, double[] c, double[] r) { if (b[0] == 0.0) { throw new IllegalArgumentException("Invalid value of b[0] == 0. The equations should be rewritten as a set of order n - 1."); } int n = a.length; double[] u = new double[n]; double[] gam = new double[n]; double bet = b[0]; u[0] = r[0] / bet; for (int j = 1; j < n; j++) { gam[j] = c[j - 1] / bet; bet = b[j] - a[j] * gam[j]; if (bet == 0.0) { throw new IllegalArgumentException("The tridagonal matrix is not of diagonal dominance."); } u[j] = (r[j] - a[j] * u[j - 1]) / bet; } for (int j = (n - 2); j >= 0; j--) { u[j] -= gam[j + 1] * u[j + 1]; } return u; } /** * Solves A * x = b by iterative biconjugate gradient method. * @param A the matrix supporting matrix vector multiplication operation. * @param b the right hand side of linear equations. * @param x on input, x should be set to an initial guess of the solution * (or all zeros). On output, x is reset to the improved solution. * @return the estimated error. */ public static double solve(IMatrix A, double[] b, double[] x) { return solve(A, A, b, x); } /** * Solves A * x = b by iterative biconjugate gradient method. * @param A the matrix supporting matrix vector multiplication operation. * @param Ap the preconditioned matrix of A. * @param b the right hand side of linear equations. * @param x on input, x should be set to an initial guess of the solution * (or all zeros). On output, x is reset to the improved solution. * @return the estimated error. */ public static double solve(IMatrix A, IMatrix Ap, double[] b, double[] x) { return solve(A, Ap, b, x, 1E-10); } /** * Solves A * x = b by iterative biconjugate gradient method. * @param A the matrix supporting matrix vector multiplication operation. * @param b the right hand side of linear equations. * @param x on input, x should be set to an initial guess of the solution * (or all zeros). On output, x is reset to the improved solution. * @param tol the desired convergence tolerance. * @return the estimated error. */ public static double solve(IMatrix A, double[] b, double[] x, double tol) { return solve(A, A, b, x, tol); } /** * Solves A * x = b by iterative biconjugate gradient method. * @param A the matrix supporting matrix vector multiplication operation. * @param Ap the preconditioned matrix of A. * @param b the right hand side of linear equations. * @param x on input, x should be set to an initial guess of the solution * (or all zeros). On output, x is reset to the improved solution. * @param tol the desired convergence tolerance. * @return the estimated error. */ public static double solve(IMatrix A, IMatrix Ap, double[] b, double[] x, double tol) { return solve(A, Ap, b, x, tol, 1); } /** * Solves A * x = b by iterative biconjugate gradient method. * @param A the matrix supporting matrix vector multiplication operation. * @param b the right hand side of linear equations. * @param x on input, x should be set to an initial guess of the solution * (or all zeros). On output, x is reset to the improved solution. * @param itol specify which convergence test is applied. If itol = 1, * iteration stops when |Ax - b| / |b| is less than the parameter tolerance. * If itol = 2, the stop criterion is * |A-1 (Ax - b)| / |A-1b| is less than tolerance. * If tol = 3, |xk+1 - xk|2 is less than * tolerance. The setting of tol = 4 is same as tol = 3 except that the * L norm instead of L2. * @param tol the desired convergence tolerance. * @return the estimated error. */ public static double solve(IMatrix A, double[] b, double[] x, double tol, int itol) { return solve(A, A, b, x, tol, itol); } /** * Solves A * x = b by iterative biconjugate gradient method. * @param A the matrix supporting matrix vector multiplication operation. * @param Ap the preconditioned matrix of A. * @param b the right hand side of linear equations. * @param x on input, x should be set to an initial guess of the solution * (or all zeros). On output, x is reset to the improved solution. * @param itol specify which convergence test is applied. If itol = 1, * iteration stops when |Ax - b| / |b| is less than the parameter tolerance. * If itol = 2, the stop criterion is * |A-1 (Ax - b)| / |A-1b| is less than tolerance. * If tol = 3, |xk+1 - xk|2 is less than * tolerance. The setting of tol = 4 is same as tol = 3 except that the * L norm instead of L2. * @param tol the desired convergence tolerance. * @return the estimated error. */ public static double solve(IMatrix A, IMatrix Ap, double[] b, double[] x, double tol, int itol) { return solve(A, Ap, b, x, tol, itol, 2 * Math.max(A.nrows(), A.ncols())); } /** * Solves A * x = b by iterative biconjugate gradient method. * This method can be called repeatedly, with maxIter < n, to monitor how * error decreases. * @param A the matrix supporting matrix vector multiplication operation. * @param b the right hand side of linear equations. * @param x on input, x should be set to an initial guess of the solution * (or all zeros). On output, x is reset to the improved solution. * @param itol specify which convergence test is applied. If itol = 1, * iteration stops when |Ax - b| / |b| is less than the parameter tolerance. * If itol = 2, the stop criterion is * |A-1 (Ax - b)| / |A-1b| is less than tolerance. * If tol = 3, |xk+1 - xk|2 is less than * tolerance. The setting of tol = 4 is same as tol = 3 except that the * L norm instead of L2. * @param tol the desired convergence tolerance. * @param maxIter the maximum number of allowed iterations. * @return the estimated error. */ public static double solve(IMatrix A, double[] b, double[] x, double tol, int itol, int maxIter) { return solve(A, A, b, x, tol, itol, maxIter); } /** * Solves A * x = b by iterative biconjugate gradient method. * This method can be called repeatedly, with maxIter < n, to monitor how * error decreases. * @param A the matrix supporting matrix vector multiplication operation. * @param Ap the preconditioned matrix of A. * @param b the right hand side of linear equations. * @param x on input, x should be set to an initial guess of the solution * (or all zeros). On output, x is reset to the improved solution. * @param itol specify which convergence test is applied. If itol = 1, * iteration stops when |Ax - b| / |b| is less than the parameter tolerance. * If itol = 2, the stop criterion is * |A-1 (Ax - b)| / |A-1b| is less than tolerance. * If tol = 3, |xk+1 - xk|2 is less than * tolerance. The setting of tol = 4 is same as tol = 3 except that the * L norm instead of L2. * @param tol the desired convergence tolerance. * @param maxIter the maximum number of allowed iterations. * @return the estimated error. */ public static double solve(IMatrix A, IMatrix Ap, double[] b, double[] x, double tol, int itol, int maxIter) { if (tol <= 0.0) { throw new IllegalArgumentException("Invalid tolerance: " + tol); } if (maxIter <= 0) { throw new IllegalArgumentException("Invalid maximum number of iterations: " + maxIter); } if (itol < 1 || itol > 4) { throw new IllegalArgumentException(String.format("Illegal itol: %d", itol)); } double err = 0.0; double ak, akden, bk, bkden = 1.0, bknum, bnrm, dxnrm, xnrm, zm1nrm, znrm = 0.0; int j, n = b.length; double[] p = new double[n]; double[] pp = new double[n]; double[] r = new double[n]; double[] rr = new double[n]; double[] z = new double[n]; double[] zz = new double[n]; A.ax(x, r); for (j = 0; j < n; j++) { r[j] = b[j] - r[j]; rr[j] = r[j]; } if (itol == 1) { bnrm = snorm(b, itol); Ap.asolve(r, z); } else if (itol == 2) { Ap.asolve(b, z); bnrm = snorm(z, itol); Ap.asolve(r, z); } else if (itol == 3 || itol == 4) { Ap.asolve(b, z); bnrm = snorm(z, itol); Ap.asolve(r, z); znrm = snorm(z, itol); } else { throw new IllegalArgumentException(String.format("Illegal itol: %d", itol)); } for (int iter = 1; iter <= maxIter; iter++) { Ap.asolve(rr, zz); for (bknum = 0.0, j = 0; j < n; j++) { bknum += z[j] * rr[j]; } if (iter == 1) { for (j = 0; j < n; j++) { p[j] = z[j]; pp[j] = zz[j]; } } else { bk = bknum / bkden; for (j = 0; j < n; j++) { p[j] = bk * p[j] + z[j]; pp[j] = bk * pp[j] + zz[j]; } } bkden = bknum; A.ax(p, z); for (akden = 0.0, j = 0; j < n; j++) { akden += z[j] * pp[j]; } ak = bknum / akden; A.atx(pp, zz); for (j = 0; j < n; j++) { x[j] += ak * p[j]; r[j] -= ak * z[j]; rr[j] -= ak * zz[j]; } Ap.asolve(r, z); if (itol == 1) { err = snorm(r, itol) / bnrm; } else if (itol == 2) { err = snorm(z, itol) / bnrm; } else if (itol == 3 || itol == 4) { zm1nrm = znrm; znrm = snorm(z, itol); if (Math.abs(zm1nrm - znrm) > EPSILON * znrm) { dxnrm = Math.abs(ak) * snorm(p, itol); err = znrm / Math.abs(zm1nrm - znrm) * dxnrm; } else { err = znrm / bnrm; continue; } xnrm = snorm(x, itol); if (err <= 0.5 * xnrm) { err /= xnrm; } else { err = znrm / bnrm; continue; } } if (iter % 10 == 0) { System.out.format("BCG: the error after %3d iterations: %.5g\n", iter, err); } if (err <= tol) { System.out.format("BCG: the error after %3d iterations: %.5g\n", iter, err); break; } } return err; } /** * Compute L2 or L-infinity norms for a vector x, as signaled by itol. */ private static double snorm(double[] x, int itol) { int n = x.length; if (itol <= 3) { double ans = 0.0; for (int i = 0; i < n; i++) { ans += x[i] * x[i]; } return Math.sqrt(ans); } else { int isamax = 0; for (int i = 0; i < n; i++) { if (Math.abs(x[i]) > Math.abs(x[isamax])) { isamax = i; } } return Math.abs(x[isamax]); } } /** * Returns the root of a function known to lie between x1 and x2 by * Brent's method. The root will be refined until its accuracy is tol. * The method is guaranteed to converge as long as the function can be * evaluated within the initial interval known to contain a root. * @param func the function to be evaluated. * @param x1 the left end of search interval. * @param x2 the right end of search interval. * @param tol the accuracy tolerance. * @return the root. */ public static double root(Function func, double x1, double x2, double tol) { return root(func, x1, x2, tol, 100); } /** * Returns the root of a function known to lie between x1 and x2 by * Brent's method. The root will be refined until its accuracy is tol. * The method is guaranteed to converge as long as the function can be * evaluated within the initial interval known to contain a root. * @param func the function to be evaluated. * @param x1 the left end of search interval. * @param x2 the right end of search interval. * @param tol the accuracy tolerance. * @param maxIter the maximum number of allowed iterations. * @return the root. */ public static double root(Function func, double x1, double x2, double tol, int maxIter) { if (tol <= 0.0) { throw new IllegalArgumentException("Invalid tolerance: " + tol); } if (maxIter <= 0) { throw new IllegalArgumentException("Invalid maximum number of iterations: " + maxIter); } double a = x1, b = x2, c = x2, d = 0, e = 0, fa = func.f(a), fb = func.f(b), fc, p, q, r, s, xm; if ((fa > 0.0 && fb > 0.0) || (fa < 0.0 && fb < 0.0)) { throw new IllegalArgumentException("Root must be bracketed."); } fc = fb; for (int iter = 1; iter <= maxIter; iter++) { if ((fb > 0.0 && fc > 0.0) || (fb < 0.0 && fc < 0.0)) { c = a; fc = fa; e = d = b - a; } if (abs(fc) < abs(fb)) { a = b; b = c; c = a; fa = fb; fb = fc; fc = fa; } tol = 2.0 * EPSILON * abs(b) + 0.5 * tol; xm = 0.5 * (c - b); if (iter % 10 == 0) { System.out.format("Brent: the root after %3d iterations: %.5g, error = %.5g\n", iter, b, xm); } if (abs(xm) <= tol || fb == 0.0) { System.out.format("Brent: the root after %3d iterations: %.5g, error = %.5g\n", iter, b, xm); return b; } if (abs(e) >= tol && abs(fa) > abs(fb)) { s = fb / fa; if (a == c) { p = 2.0 * xm * s; q = 1.0 - s; } else { q = fa / fc; r = fb / fc; p = s * (2.0 * xm * q * (q - r) - (b - a) * (r - 1.0)); q = (q - 1.0) * (r - 1.0) * (s - 1.0); } if (p > 0.0) { q = -q; } p = abs(p); double min1 = 3.0 * xm * q - abs(tol * q); double min2 = abs(e * q); if (2.0 * p < (min1 < min2 ? min1 : min2)) { e = d; d = p / q; } else { d = xm; e = d; } } else { d = xm; e = d; } a = b; fa = fb; if (abs(d) > tol) { b += d; } else { b += copySign(tol, xm); } fb = func.f(b); } System.err.println("Brent's method exceeded the maximum number of iterations."); return b; } /** * Returns the root of a function whose derivative is available known * to lie between x1 and x2 by Newton-Raphson method. The root will be * refined until its accuracy is within xacc. * @param func the function to be evaluated. * @param x1 the left end of search interval. * @param x2 the right end of search interval. * @param tol the accuracy tolerance. * @return the root. */ public static double root(DifferentiableFunction func, double x1, double x2, double tol) { return root(func, x1, x2, tol, 100); } /** * Returns the root of a function whose derivative is available known * to lie between x1 and x2 by Newton-Raphson method. The root will be * refined until its accuracy is within xacc. * @param func the function to be evaluated. * @param x1 the left end of search interval. * @param x2 the right end of search interval. * @param tol the accuracy tolerance. * @param maxIter the maximum number of allowed iterations. * @return the root. */ public static double root(DifferentiableFunction func, double x1, double x2, double tol, int maxIter) { if (tol <= 0.0) { throw new IllegalArgumentException("Invalid tolerance: " + tol); } if (maxIter <= 0) { throw new IllegalArgumentException("Invalid maximum number of iterations: " + maxIter); } double fl = func.f(x1); double fh = func.f(x2); if ((fl > 0.0 && fh > 0.0) || (fl < 0.0 && fh < 0.0)) { throw new IllegalArgumentException("Root must be bracketed in rtsafe"); } if (fl == 0.0) { return x1; } if (fh == 0.0) { return x2; } double xh, xl; if (fl < 0.0) { xl = x1; xh = x2; } else { xh = x1; xl = x2; } double rts = 0.5 * (x1 + x2); double dxold = abs(x2 - x1); double dx = dxold; double f = func.f(rts); double df = func.df(rts); for (int iter = 1; iter <= maxIter; iter++) { if ((((rts - xh) * df - f) * ((rts - xl) * df - f) > 0.0) || (abs(2.0 * f) > abs(dxold * df))) { dxold = dx; dx = 0.5 * (xh - xl); rts = xl + dx; if (xl == rts) { System.out.format("Newton-Raphson: the root after %3d iterations: %.5g, error = %.5g\n", iter, rts, dx); return rts; } } else { dxold = dx; dx = f / df; double temp = rts; rts -= dx; if (temp == rts) { System.out.format("Newton-Raphson: the root after %3d iterations: %.5g, error = %.5g\n", iter, rts, dx); return rts; } } if (iter % 10 == 0) { System.out.format("Newton-Raphson: the root after %3d iterations: %.5g, error = %.5g\n", iter, rts, dx); } if (abs(dx) < tol) { System.out.format("Newton-Raphson: the root after %3d iterations: %.5g, error = %.5g\n", iter, rts, dx); return rts; } f = func.f(rts); df = func.df(rts); if (f < 0.0) { xl = rts; } else { xh = rts; } } System.err.println("Newton-Raphson method exceeded the maximum number of iterations."); return rts; } /** * Minimize a function along a search direction by find a step which satisfies * a sufficient decrease condition and a curvature condition. *

* At each stage this function updates an interval of uncertainty with * endpoints stx and sty. The interval of * uncertainty is initially chosen so that it contains a * minimizer of the modified function *

     *      f(x+stp*s) - f(x) - ftol*stp*(gradf(x)'s).
     * 
* If a step is obtained for which the modified function * has a nonpositive function value and nonnegative derivative, * then the interval of uncertainty is chosen so that it * contains a minimizer of f(x+stp*s). *

* The algorithm is designed to find a step which satisfies * the sufficient decrease condition *

     *       f(x+stp*s) <= f(X) + ftol*stp*(gradf(x)'s),
     * 
* and the curvature condition *
     *       abs(gradf(x+stp*s)'s)) <= gtol*abs(gradf(x)'s).
     * 
* If ftol is less than gtol and if, for example, * the function is bounded below, then there is always a step which * satisfies both conditions. If no step can be found which satisfies both * conditions, then the algorithm usually stops when rounding * errors prevent further progress. In this case stp only * satisfies the sufficient decrease condition. *

* * @param xold on input this contains the base point for the line search. * * @param fold on input this contains the value of the objective function * at x. * * @param g on input this contains the gradient of the objective function * at x. * * @param p the search direction. * * @param x on output, it contains xold + alam*p. * * @param stpmax specify upper bound for the step in the line search so that * we do not try to evaluate the function in regions where it is * undefined or subject to overflow. * * @return the new function value. */ static double linesearch(MultivariateFunction func, double[] xold, double fold, double[] g, double[] p, double[] x, double stpmax) { if (stpmax <= 0) { throw new IllegalArgumentException("Invalid upper bound of linear search step: " + stpmax); } // Termination occurs when the relative width of the interval // of uncertainty is at most xtol. final double xtol = EPSILON; // Tolerance for the sufficient decrease condition. final double ftol = 1.0E-4; int n = xold.length; // Scale if attempted step is too big double pnorm = norm(p); if (pnorm > stpmax) { double r = stpmax / pnorm; for (int i = 0; i < n; i++) { p[i] *= r; } } // Check if s is a descent direction. double slope = 0.0; for (int i = 0; i < n; i++) { slope += g[i] * p[i]; } if (slope >= 0) { throw new IllegalArgumentException("Line Search: the search direction is not a descent direction, which may be caused by roundoff problem."); } // Calculate minimum step. double test = 0.0; for (int i = 0; i < n; i++) { double temp = abs(p[i]) / max(xold[i], 1.0); if (temp > test) { test = temp; } } double alammin = xtol / test; double alam = 1.0; double alam2 = 0.0, f2 = 0.0; double a, b, disc, rhs1, rhs2, tmpalam; while (true) { // Evaluate the function and gradient at stp // and compute the directional derivative. for (int i = 0; i < n; i++) { x[i] = xold[i] + alam * p[i]; } double f = func.f(x); // Convergence on Δ x. if (alam < alammin) { System.arraycopy(xold, 0, x, 0, n); return f; } else if (f <= fold + ftol * alam * slope) { // Sufficient function decrease. return f; } else { // Backtrack if (alam == 1.0) { // First time tmpalam = -slope / (2.0 * (f - fold - slope)); } else { // Subsequent backtracks. rhs1 = f - fold - alam * slope; rhs2 = f2 - fold - alam2 * slope; a = (rhs1 / (alam * alam) - rhs2 / (alam2 * alam2)) / (alam - alam2); b = (-alam2 * rhs1 / (alam * alam) + alam * rhs2 / (alam2 * alam2)) / (alam - alam2); if (a == 0.0) { tmpalam = -slope / (2.0 * b); } else { disc = b * b - 3.0 * a * slope; if (disc < 0.0) { tmpalam = 0.5 * alam; } else if (b <= 0.0) { tmpalam = (-b + sqrt(disc)) / (3.0 * a); } else { tmpalam = -slope / (b + sqrt(disc)); } } if (tmpalam > 0.5 * alam) { tmpalam = 0.5 * alam; } } } alam2 = alam; f2 = f; alam = max(tmpalam, 0.1 * alam); } } /** * This method solves the unconstrained minimization problem *

     *     min f(x),    x = (x1,x2,...,x_n),
     * 
* using the limited-memory BFGS method. The method is especially * effective on problems involving a large number of variables. In * a typical iteration of this method an approximation Hk to the * inverse of the Hessian is obtained by applying m BFGS updates to * a diagonal matrix Hk0, using information from the previous M steps. * The user specifies the number m, which determines the amount of * storage required by the routine. The algorithm is described in "On the * limited memory BFGS method for large scale optimization", by D. Liu and J. Nocedal, * Mathematical Programming B 45 (1989) 503-528. * * @param func the function to be minimized. * * @param m the number of corrections used in the L-BFGS update. * Values of m less than 3 are not recommended; * large values of m will result in excessive * computing time. 3 <= m <= 7 is recommended. * * @param x on initial entry this must be set by the user to the values * of the initial estimate of the solution vector. On exit with * iflag = 0, it contains the values of the variables * at the best point found (usually a solution). * * @param gtol the convergence requirement on zeroing the gradient. * * @return the minimum value of the function. */ public static double min(DifferentiableMultivariateFunction func, int m, double[] x, double gtol) { return min(func, m, x, gtol, 200); } /** * This method solves the unconstrained minimization problem *
     *     min f(x),    x = (x1,x2,...,x_n),
     * 
* using the limited-memory BFGS method. The method is especially * effective on problems involving a large number of variables. In * a typical iteration of this method an approximation Hk to the * inverse of the Hessian is obtained by applying m BFGS updates to * a diagonal matrix Hk0, using information from the previous M steps. * The user specifies the number m, which determines the amount of * storage required by the routine. The algorithm is described in "On the * limited memory BFGS method for large scale optimization", by D. Liu and J. Nocedal, * Mathematical Programming B 45 (1989) 503-528. * * @param func the function to be minimized. * * @param m the number of corrections used in the L-BFGS update. * Values of m less than 3 are not recommended; * large values of m will result in excessive * computing time. 3 <= m <= 7 is recommended. * A common choice for m is m = 5. * * @param x on initial entry this must be set by the user to the values * of the initial estimate of the solution vector. On exit with * iflag = 0, it contains the values of the variables * at the best point found (usually a solution). * * @param gtol the convergence requirement on zeroing the gradient. * * @param maxIter the maximum allowed number of iterations. * * @return the minimum value of the function. */ public static double min(DifferentiableMultivariateFunction func, int m, double[] x, double gtol, int maxIter) { // Initialize. if (m <= 0) { throw new IllegalArgumentException("Invalid m: " + m); } // The convergence criterion on x values. final double TOLX = 4 * EPSILON; // The scaled maximum step length allowed in line searches. final double STPMX = 100.0; int n = x.length; // The solution vector of line search. double[] xnew = new double[n]; // The gradient vector of line search. double[] gnew = new double[n]; // Line search direction. double[] xi = new double[n]; // difference of x from previous step. double[][] s = new double[m][n]; // difference of g from previous step. double[][] y = new double[m][n]; // buffer for 1 / (y' * s) double[] rho = new double[m]; double[] a = new double[m]; // Diagonal of initial H0. double diag = 1.0; // Current gradient. double[] g = new double[n]; // Current function value. double f = func.f(x, g); System.out.format("L-BFGS: initial function value: %.5g\n", f); double sum = 0.0; // Initial line search direction. for (int i = 0; i < n; i++) { xi[i] = -g[i]; sum += x[i] * x[i]; } // Upper limit for line search step. double stpmax = STPMX * max(sqrt(sum), n); for (int iter = 1, k = 0; iter <= maxIter; iter++) { linesearch(func, x, f, g, xi, xnew, stpmax); f = func.f(xnew, gnew); for (int i = 0; i < n; i++) { s[k][i] = xnew[i] - x[i]; y[k][i] = gnew[i] - g[i]; x[i] = xnew[i]; g[i] = gnew[i]; } // Test for convergence on x. double test = 0.0; for (int i = 0; i < n; i++) { double temp = abs(s[k][i]) / max(abs(x[i]), 1.0); if (temp > test) { test = temp; } } if (test < TOLX) { System.out.format("L-BFGS: the function value after %3d iterations: %.5g\n", iter, f); return f; } // Test for convergence on zero gradient. test = 0.0; double den = max(f, 1.0); for (int i = 0; i < n; i++) { double temp = abs(g[i]) * max(abs(x[i]), 1.0) / den; if (temp > test) { test = temp; } } if (test < gtol) { System.out.format("L-BFGS: the function value after %3d iterations: %.5g\n", iter, f); return f; } if (iter % 10 == 0) { System.out.format("L-BFGS: the function value after %3d iterations: %.5g\n", iter, f); } double ys = dot(y[k], s[k]); double yy = dot(y[k], y[k]); diag = ys / yy; rho[k] = 1.0 / ys; for (int i = 0; i < n; i++) { xi[i] = -g[i]; } int cp = k; int bound = iter > m ? m : iter; for (int i = 0; i < bound; i++) { a[cp] = rho[cp] * dot(s[cp], xi); axpy(-a[cp], y[cp], xi); if (--cp == - 1) { cp = m - 1; } } for (int i = 0; i < n; i++) { xi[i] *= diag; } for (int i = 0; i < bound; i++) { if (++cp == m) { cp = 0; } double b = rho[cp] * dot(y[cp], xi); axpy(a[cp]-b, s[cp], xi); } if (++k == m) { k = 0; } } throw new IllegalStateException("L-BFGS: Too many iterations."); } /** * This method solves the unconstrained minimization problem *
     *     min f(x),    x = (x1,x2,...,x_n),
     * 
* using the BFGS method. * * @param func the function to be minimized. * * @param x on initial entry this must be set by the user to the values * of the initial estimate of the solution vector. On exit, it * contains the values of the variables at the best point found * (usually a solution). * * @param gtol the convergence requirement on zeroing the gradient. * * @return the minimum value of the function. */ public static double min(DifferentiableMultivariateFunction func, double[] x, double gtol) { return min(func, x, gtol, 200); } /** * This method solves the unconstrained minimization problem *
     *     min f(x),    x = (x1,x2,...,x_n),
     * 
* using the BFGS method. * * @param func the function to be minimized. * * @param x on initial entry this must be set by the user to the values * of the initial estimate of the solution vector. On exit, it * contains the values of the variables at the best point found * (usually a solution). * * @param gtol the convergence requirement on zeroing the gradient. * * @param maxIter the maximum allowed number of iterations. * * @return the minimum value of the function. */ public static double min(DifferentiableMultivariateFunction func, double[] x, double gtol, int maxIter) { // The convergence criterion on x values. final double TOLX = 4 * EPSILON; // The scaled maximum step length allowed in line searches. final double STPMX = 100.0; double den, fac, fad, fae, sumdg, sumxi, temp, test; int n = x.length; double[] dg = new double[n]; double[] g = new double[n]; double[] hdg = new double[n]; double[] xnew = new double[n]; double[] xi = new double[n]; double[][] hessin = new double[n][n]; // Calculate starting function value and gradient and initialize the // inverse Hessian to the unit matrix. double f = func.f(x, g); System.out.format("BFGS: initial function value: %.5g\n", f); double sum = 0.0; for (int i = 0; i < n; i++) { hessin[i][i] = 1.0; // Initialize line direction. xi[i] = -g[i]; sum += x[i] * x[i]; } double stpmax = STPMX * max(sqrt(sum), n); for (int iter = 1; iter <= maxIter; iter++) { // The new function evaluation occurs in line search. f = linesearch(func, x, f, g, xi, xnew, stpmax); if (iter % 10 == 0) { System.out.format("BFGS: the function value after %3d iterations: %.5g\n", iter, f); } // update the line direction and current point. for (int i = 0; i < n; i++) { xi[i] = xnew[i] - x[i]; x[i] = xnew[i]; } // Test for convergence on x. test = 0.0; for (int i = 0; i < n; i++) { temp = abs(xi[i]) / max(abs(x[i]), 1.0); if (temp > test) { test = temp; } } if (test < TOLX) { System.out.format("BFGS: the function value after %3d iterations: %.5g\n", iter, f); return f; } System.arraycopy(g, 0, dg, 0, n); func.f(x, g); // Test for convergence on zero gradient. den = max(f, 1.0); test = 0.0; for (int i = 0; i < n; i++) { temp = abs(g[i]) * max(abs(x[i]), 1.0) / den; if (temp > test) { test = temp; } } if (test < gtol) { System.out.format("BFGS: the function value after %3d iterations: %.5g\n", iter, f); return f; } for (int i = 0; i < n; i++) { dg[i] = g[i] - dg[i]; } for (int i = 0; i < n; i++) { hdg[i] = 0.0; for (int j = 0; j < n; j++) { hdg[i] += hessin[i][j] * dg[j]; } } fac = fae = sumdg = sumxi = 0.0; for (int i = 0; i < n; i++) { fac += dg[i] * xi[i]; fae += dg[i] * hdg[i]; sumdg += dg[i] * dg[i]; sumxi += xi[i] * xi[i]; } // Skip upudate if fac is not sufficiently positive. if (fac > sqrt(EPSILON * sumdg * sumxi)) { fac = 1.0 / fac; fad = 1.0 / fae; // The vector that makes BFGS different from DFP. for (int i = 0; i < n; i++) { dg[i] = fac * xi[i] - fad * hdg[i]; } // BFGS updating formula. for (int i = 0; i < n; i++) { for (int j = i; j < n; j++) { hessin[i][j] += fac * xi[i] * xi[j] - fad * hdg[i] * hdg[j] + fae * dg[i] * dg[j]; hessin[j][i] = hessin[i][j]; } } } // Calculate the next direction to go. Arrays.fill(xi, 0.0); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { xi[i] -= hessin[i][j] * g[j]; } } } throw new IllegalStateException("BFGS: Too many iterations."); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy