smile.math.kernel.Matern Maven / Gradle / Ivy
/*******************************************************************************
* Copyright (c) 2010-2020 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Smile. If not, see .
******************************************************************************/
package smile.math.kernel;
/**
* The class of Matérn kernels is a generalization of the Gaussian/RBF.
* It has an additional parameter nu which controls the smoothness of
* the kernel function. The smaller nu, the less smooth the approximated
* function is. As nu -> inf, the kernel becomes equivalent to the
* Gaussian/RBF kernel. When nu = 1/2, the kernel becomes identical to the
* Laplacian kernel. The Matern kernel become especially simple
* when nu is half-integer. Important intermediate values are 3/2
* (once differentiable functions) and 5/2 (twice differentiable functions).
*
* @see Gaussian
* @see Laplacian
*
* @author Haifeng Li
*/
public class Matern implements IsotropicKernel {
private static final long serialVersionUID = 2L;
private static final double SQRT3 = Math.sqrt(3);
private static final double SQRT5 = Math.sqrt(5);
/** The length scale of the kernel. */
final double sigma;
/** The smoothness of the kernel. */
final double nu;
/** The lower bound of length scale for hyperparameter tuning. */
final double lo;
/** The upper bound of length scale for hyperparameter tuning. */
final double hi;
/**
* Constructor.
* @param sigma The length scale of kernel.
* @param nu The smoothness of the kernel function. Only 0.5, 1.5, 2.5 and Inf are accepted.
* The smoothness parameter is fixed during hyperparameter for tuning.
* @param lo The lower bound of length scale for hyperparameter tuning.
* @param hi The upper bound of length scale for hyperparameter tuning.
*/
public Matern(double sigma, double nu, double lo, double hi) {
if (sigma <= 0) {
throw new IllegalArgumentException("The length scale is not positive: " + sigma);
}
if (nu != 1.5 && nu != 2.5 && nu != 0.5 && !Double.isInfinite(nu)) {
throw new IllegalArgumentException("nu must be 0.5, 1.5, 2.5 or Info: " + nu);
}
this.sigma = sigma;
this.nu = nu;
this.lo = lo;
this.hi = hi;
}
/** Returns the length scale of kernel. */
public double scale() {
return sigma;
}
/** Returns the smoothness of kernel. */
public double smoothness() {
return nu;
}
@Override
public String toString() {
return String.format("MaternKernel(%.4f, %.1f)", sigma, nu);
}
@Override
public double f(double dist) {
return k(dist);
}
@Override
public double k(double dist) {
double d = dist / sigma;
if (nu == 1.5) {
d *= SQRT3;
return (1.0 + d) * Math.exp(-d);
}
if (nu == 2.5) {
d *= SQRT5;
return (1.0 + d) * Math.exp(-d);
}
if (nu == 0.5) {
return Math.exp(-d);
}
if (Double.isInfinite(nu)) {
return Math.exp(-0.5 * d * d);
}
throw new IllegalStateException("Unsupported nu = " + nu);
}
@Override
public double[] kg(double dist) {
double d = dist / sigma;
double k, g;
if (nu == 1.5) {
d *= SQRT3;
k = (1.0 + d) * Math.exp(-d);
g = (2.0 + d) * Math.exp(-d) * d / sigma;
} else if (nu == 2.5) {
d *= SQRT5;
k = (1.0 + d) * Math.exp(-d);
g = (2.0 + d) * Math.exp(-d) * d / sigma;
} else if (nu == 0.5) {
k = Math.exp(-d);
g = k * d / sigma;
} else if (Double.isInfinite(nu)) {
k = Math.exp(-0.5 * d * d);
g = k * d * d / sigma;
} else {
throw new IllegalStateException("Unsupported nu = " + nu);
}
return new double[] { k, g };
}
}