![JAR search and dependency download from the Maven repository](/logo.png)
smile.math.kernel.SparseGaussianKernel Maven / Gradle / Ivy
/*******************************************************************************
* Copyright (c) 2010-2020 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Smile. If not, see .
******************************************************************************/
package smile.math.kernel;
import smile.math.MathEx;
import smile.util.SparseArray;
/**
* Gaussian kernel, also referred as RBF kernel or squared exponential kernel.
*
*
* k(u, v) = e-||u-v||2 / (2 * σ2)
*
* where σ > 0
is the scale parameter of the kernel.
*
* The Gaussian kernel is a good choice for a great deal of applications,
* although sometimes it is remarked as being over used.
* @author Haifeng Li
*/
public class SparseGaussianKernel extends Gaussian implements MercerKernel {
/**
* Constructor.
* @param sigma The length scale of kernel.
*/
public SparseGaussianKernel(double sigma) {
this(sigma, 1E-05, 1E5);
}
/**
* Constructor.
* @param sigma The length scale of kernel.
* @param lo The lower bound of length scale for hyperparameter tuning.
* @param hi The upper bound of length scale for hyperparameter tuning.
*/
public SparseGaussianKernel(double sigma, double lo, double hi) {
super(sigma, lo, hi);
}
@Override
public double k(SparseArray x, SparseArray y) {
return k(MathEx.distance(x, y));
}
@Override
public double[] kg(SparseArray x, SparseArray y) {
return kg(MathEx.distance(x, y));
}
@Override
public SparseGaussianKernel of(double[] params) {
return new SparseGaussianKernel(params[0], lo, hi);
}
@Override
public double[] hyperparameters() {
return new double[] { sigma };
}
@Override
public double[] lo() {
return new double[] { lo };
}
@Override
public double[] hi() {
return new double[] { hi };
}
}