All Downloads are FREE. Search and download functionalities are using the official Maven repository.

smile.stat.distribution.NegativeBinomialDistribution Maven / Gradle / Ivy

/*******************************************************************************
 * Copyright (c) 2010-2020 Haifeng Li. All rights reserved.
 *
 * Smile is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as
 * published by the Free Software Foundation, either version 3 of
 * the License, or (at your option) any later version.
 *
 * Smile is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with Smile.  If not, see .
 ******************************************************************************/

package smile.stat.distribution;

import static smile.math.MathEx.factorial;
import static smile.math.MathEx.lfactorial;
import static smile.math.special.Beta.regularizedIncompleteBetaFunction;
import static smile.math.special.Gamma.gamma;
import static smile.math.special.Gamma.lgamma;

/**
 * Negative binomial distribution arises as the probability distribution of
 * the number of successes in a series of independent and identically distributed
 * Bernoulli trials needed to get a specified (non-random) number r of failures.
 * If r is an integer, it is usually called Pascal distribution. Otherwise, it
 * is often called Polya distribution for the real-valued case. When r = 1 we
 * get the probability distribution of number of successes before the
 * first failure, which is a geometric distribution.
 * 

* An alternative definition is that X is the total number of trials needed * to get r failures, not simply the number of successes. This alternative * parameterization can be used as an alternative to the Poisson distribution. * It is especially useful for discrete data over an unbounded positive range * whose sample variance exceeds the sample mean. If a Poisson distribution is * used to model such data, the model mean and variance are equal. In that case, * the observations are overdispersed with respect to the Poisson model. * Since the negative binomial distribution has one more parameter than the * Poisson, the second parameter can be used to adjust the variance * independently of the mean. In the case of modest overdispersion, this may * produce substantially similar results to an overdispersed Poisson distribution. *

* The negative binomial distribution also arises as a continuous mixture * of Poisson distributions where the mixing distribution of the Poisson rate * is a gamma distribution. That is, we can view the negative binomial as a * Poisson(λ) distribution, where λ is itself a random variable, * distributed according to Γ(r, p/(1 - p)). * * @author Haifeng Li */ public class NegativeBinomialDistribution extends DiscreteDistribution { private static final long serialVersionUID = 2L; /** * The number of failures until the experiment is stopped. */ public final double r; /** * The success probability in each experiment. */ public final double p; /** * Constructor. * @param r the number of failures until the experiment is stopped. * @param p success probability in each experiment. */ public NegativeBinomialDistribution(double r, double p) { if (p <= 0 || p >= 1) { throw new IllegalArgumentException("Invalid p: " + p); } if (r <= 0) { throw new IllegalArgumentException("Invalid r: " + r); } this.p = p; this.r = r; } @Override public int length() { return 2; } @Override public double mean() { return r * (1 - p) / p; } @Override public double variance() { return r * (1 - p) / (p * p); } @Override public double sd() { return Math.sqrt(r * (1 - p)) / p; } /** * Shannon entropy. Not supported. */ @Override public double entropy() { throw new UnsupportedOperationException("Negative Binomial distribution does not support entropy()"); } @Override public String toString() { if (r == (int) r) { return String.format("Negative Binomial(%d, %.4f)", r, p); } else { return String.format("Negative Binomial(%.4f, %.4f)", r, p); } } @Override public double rand() { return inverseTransformSampling(); } @Override public double p(int k) { if (k < 0) { return 0.0; } else { return gamma(r + k) / (factorial(k) * gamma(r)) * Math.pow(p, r) * Math.pow(1 - p, k); } } @Override public double logp(int k) { if (k < 0) { return Double.NEGATIVE_INFINITY; } else { return lgamma(r + k) - lfactorial(k) - lgamma(r) + r * Math.log(p) + k * Math.log(1 - p); } } @Override public double cdf(double k) { if (k < 0) { return 0.0; } else { return regularizedIncompleteBetaFunction(r, k + 1, p); } } @Override public double quantile(double p) { if (p < 0.0 || p > 1.0) { throw new IllegalArgumentException("Invalid p: " + p); } // Starting guess near peak of density. // Expand interval until we bracket. int kl, ku, inc = 1; int k = (int) mean(); if (p < cdf(k)) { do { k = Math.max(k - inc, 0); inc *= 2; } while (p < cdf(k) && k > 0); kl = k; ku = k + inc / 2; } else { do { k += inc; inc *= 2; } while (p > cdf(k)); ku = k; kl = k - inc / 2; } return quantile(p, kl, ku); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy